Advertisement

Infinite Random Geometric Graphs from the Hexagonal Metric

  • Anthony Bonato
  • Jeannette Janssen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7643)

Abstract

We consider countably infinite random geometric graphs, whose vertices are points in ℝ n , and edges are added independently with probability p ∈ (0,1) if the metric distance between the vertices is below a given threshold. Assume that the vertex set is randomly chosen and dense in ℝ n . We address the basic question: for what metrics is there a unique isomorphism type for graphs resulting from this random process? It was shown in [7] that a unique isomorphism type occurs for the L  ∞ -metric for all n ≥ 1. The hexagonal metric is a convex polyhedral distance function on ℝ2, which has the property that its unit balls tile the plane, as in the case of the L  ∞ -metric. We may view the hexagonal metric as an approximation of the Euclidean metric, and it arises in computational geometry. We show that the random process with the hexagonal metric does not lead to a unique isomorphism type.

Keywords

Random Graph Voronoi Diagram Computational Geometry Subgraph Frequency Random Geometric Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aiello, W., Bonato, A., Cooper, C., Janssen, J., Prałat, P.: A spatial web graph model with local influence regions. Internet Mathematics 5, 175–196 (2009)CrossRefGoogle Scholar
  2. 2.
    Balister, P., Bollobás, B., Sarkar, A., Walters, M.: Highly connected random geometric graphs. Discrete Applied Mathematics 157, 309–320 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Barbeau, M., Kranakis, E.: Principles of Ad Hoc Networking. John Wiley and Sons (2007)Google Scholar
  4. 4.
    Barequet, G., Dickerson, M.T., Goodrich, M.T.: Voronoi diagrams for convex polygon-offset distance functions. Discrete & Computational Geometry 25, 271–291 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bonato, A.: A Course on the Web Graph. American Mathematical Society Graduate Studies Series in Mathematics, Providence, Rhode Island (2008)Google Scholar
  6. 6.
    Bonato, A., Janssen, J., Prałat, P.: The Geometric Protean Model for On-Line Social Networks. In: Kumar, R., Sivakumar, D. (eds.) WAW 2010. LNCS, vol. 6516, pp. 110–121. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Bonato, A., Janssen, J.: Infinite random geometric graphs. Annals of Combinatorics 15, 597–617 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Borgs, C., Chayes, J., Lovász, L., Sós, V.T., Vesztergombi, K.: Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing. Advances in Math. 219, 1801–1851 (2008)zbMATHCrossRefGoogle Scholar
  9. 9.
    Borgs, C., Chayes, J., Lovász, L., Sós, V.T., Vesztergombi, K.: Convergent Sequences of Dense Graphs II: Multiway Cuts and Statistical Physics, Preprint (2007)Google Scholar
  10. 10.
    Bryant, V.: Metric Spaces: Iteration and Application. Cambridge University Press, Cambridge (1985)zbMATHGoogle Scholar
  11. 11.
    Cameron, P.J.: The random graph. In: Graham, R.L., Nešetřil, J. (eds.) Algorithms and Combinatorics, vol. 14, pp. 333–351. Springer, New York (1997)Google Scholar
  12. 12.
    Cameron, P.J.: The random graph revisited. In: Casacuberta, C., Miró-Roig, R.M., Verdera, J., Xambó-Descamps, S. (eds.) European Congress of Mathematics, vol. I, pp. 267–274. Birkhauser, Basel (2001)CrossRefGoogle Scholar
  13. 13.
    Chew, L.P., Kedem, K., Sharir, M., Tagansky, B., Welzl, E.: Voronoi diagrams of lines in three dimensions under polyhedral convex distance functions. J. Algorithms 29, 238–255 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Ellis, R., Jia, X., Yan, C.H.: On random points in the unit disk. Random Algorithm and Structures 29, 14–25 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Erdős, P., Rényi, A.: Asymmetric graphs. Acta Mathematica Academiae Scientiarum Hungaricae 14, 295–315 (1963)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Flaxman, A., Frieze, A.M., Vera, J.: A geometric preferential attachment model of networks. Internet Mathematics 3, 187–205 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Frieze, A.M., Kleinberg, J., Ravi, R., Debany, W.: Line of sight networks. Combinatorics, Probability and Computing 18, 145–163 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Fu, N., Imai, H., Moriyama, S.: Voronoi diagrams on periodic graphs. In: Proceedings of the International Symposium on Voronoi Diagrams in Science and Engineering (2010)Google Scholar
  19. 19.
    Goel, A., Rai, S., Krishnamachari, B.: Monotone properties of random geometric graphs have sharp thresholds. Annals of Applied Probability 15, 2535–2552 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Icking, C., Klein, R., Le, N., Ma, L.: Convex distance functions in 3-space are different. In: Proceedings of the Ninth Annual Symposium on Computational Geometry (1993)Google Scholar
  21. 21.
    Janssen, J.: Spatial models for virtual networks. In: Proceedings of the 6th Computability in Europe (2010)Google Scholar
  22. 22.
    Lovász, L., Szegedy, B.: Limits of dense graph sequences. J. Comb. Theory B 96, 933–957 (2006)zbMATHCrossRefGoogle Scholar
  23. 23.
    Penrose, M.: Random Geometric Graphs. Oxford University Press, Oxford (2003)zbMATHCrossRefGoogle Scholar
  24. 24.
    Stojmenovic, I.: Honeycomb networks: Topological properties and communication algorithms. IEEE Transactions on Parallel and Distributed Systems 8, 1036–1042 (1997)CrossRefGoogle Scholar
  25. 25.
    West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice-Hall (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anthony Bonato
    • 1
  • Jeannette Janssen
    • 2
  1. 1.Department of MathematicsRyerson UniversityTorontoCanada
  2. 2.Department of Mathematics and StatisticsDalhousie UniversityHalifaxCanada

Personalised recommendations