Maximum Order of a Planar Oclique Is 15

  • Sagnik Sen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7643)


An oclique is an oriented graph where every pair of distinct non-adjacent vertices are connected by a directed path of length 2. Klostermeyer and MacGillivray conjectured that the maximum order of a planar oclique is 15. In this article we settle that conjecture.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sopena, E.: Oriented graph coloring. Discrete Mathematics 229(1-3), 359–369 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Marshall, T.H.: Homomorphism bounds for oriented planar graphs. J. Graph Theory 55, 175–190 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Raspaud, A., Sopena, E.: Good and semi-strong colorings of oriented planar graphs. Inf. Process. Lett. 51(4), 171–174 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Sopena, E.: There exist oriented planar graphs with oriented chromatic number at least sixteen. Inf. Process. Lett. 81(6), 309–312 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Klostermeyer, W., MacGillivray, G.: Analogs of cliques for oriented coloring. Discussiones Mathematicae Graph Theory 24(3), 373–388 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Goddard, W., Henning, M.A.: Domination in planar graphs with small diameter. J. Graph Theory 40, 1–25 (2002)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sagnik Sen
    • 1
    • 2
  1. 1.Univ. Bordeaux, LaBRI, UMR5800TalenceFrance
  2. 2.CNRS, LaBRI, UMR5800TalenceFrance

Personalised recommendations