Advertisement

Maximum Order of a Planar Oclique Is 15

  • Sagnik Sen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7643)

Abstract

An oclique is an oriented graph where every pair of distinct non-adjacent vertices are connected by a directed path of length 2. Klostermeyer and MacGillivray conjectured that the maximum order of a planar oclique is 15. In this article we settle that conjecture.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sopena, E.: Oriented graph coloring. Discrete Mathematics 229(1-3), 359–369 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Marshall, T.H.: Homomorphism bounds for oriented planar graphs. J. Graph Theory 55, 175–190 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Raspaud, A., Sopena, E.: Good and semi-strong colorings of oriented planar graphs. Inf. Process. Lett. 51(4), 171–174 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Sopena, E.: There exist oriented planar graphs with oriented chromatic number at least sixteen. Inf. Process. Lett. 81(6), 309–312 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Klostermeyer, W., MacGillivray, G.: Analogs of cliques for oriented coloring. Discussiones Mathematicae Graph Theory 24(3), 373–388 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Goddard, W., Henning, M.A.: Domination in planar graphs with small diameter. J. Graph Theory 40, 1–25 (2002)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sagnik Sen
    • 1
    • 2
  1. 1.Univ. Bordeaux, LaBRI, UMR5800TalenceFrance
  2. 2.CNRS, LaBRI, UMR5800TalenceFrance

Personalised recommendations