Advertisement

On Stepsize of Fast Subspace Tracking Methods

  • Zhu Cheng
  • Zhan Wang
  • Haitao Liu
  • Majid Ahmadi
Part of the Communications in Computer and Information Science book series (CCIS, volume 337)

Abstract

Adjusting stepsize between convergence rate and steady state error level or stability is a problem in some subspace tracking schemes. Methods in DPM or Oja class may sometimes show sparks in their steady state error, even with a rather small stepsize. By a study on the schemes’ updating routine, it is found that the update does not happen to all of basis vectors but to a specific vector, if a proper basis is chosen to describe the estimated subspace. The vector moves only in a plane which is defined by the new input and pervious estimation. Through analyzing the vectors relationship in that plane, the movement of that vector is constricted to a reasonable range as an amendment on the algorithms to fix the sparks problem. The simulation confirms it eliminates the sparks.

Keywords

Array signal processing subspace tracking stepsize convergence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Owsley, N.L.: Adaptive Data Orthogonalization. In: ICASSP 1978, pp. 109–112 (1978)Google Scholar
  2. 2.
    Doukopoulos, X.G., Moustakides, G.V.: Fast and Stable Subspace Tracking. IEEE Trans. on Signal Processing 56(4), 1452 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Doukopoulos, X.G.: Power techniques for blind channel estimation in wireless communication systems, Ph.D. dissertation, IRISA-INRIA, Univ. Rennes, Rennes, France (2004)Google Scholar
  4. 4.
    Attallah, S., Abed-Maraim, K.: Low-cost adaptive algorithm for noise subspace estimation. IEE Electronics Letters 38(12), 609–611 (2002)CrossRefGoogle Scholar
  5. 5.
    Oja, E.: Principal components, minor components, and linear neural networks. Neural Networks 5, 927–935 (1992)CrossRefGoogle Scholar
  6. 6.
    Attallah, S.: The generalized Rayleigh’s quotient adaptive noise subspace algorithm: A Householder transformation-based implementation. IEEE Trans. Circuits Syst. II, Exp. Briefs 42(9), 3–7 (2006)Google Scholar
  7. 7.
    Linjie, Q., Zhu, C., et al.: Modification Algorithms for a class of subspace tracking methods. Signal Processing 26(5), 741 (2010) (Chinese)Google Scholar
  8. 8.
    Wang, R., et al.: A Novel Orthonormalization Matrix Based Fast and Stable DPM Algorithm for Principal and Minor Subspace Tracking. IEEE Trans. on Signal Processing 60(1), 466 (2012)CrossRefGoogle Scholar
  9. 9.
    Abed-Meraim, K., Attallah, S., Chkeif, A., Hua, Y.: Orthogonal oja algorithm. IEEE Signal Processing Letters, 116–119 (2000)Google Scholar
  10. 10.
    Bartelmaos, S., Abed-Meraim, K.: Principal and minor subspace tracking: Algorithms & stability analysis. In: Proc. IEEE ICASSP 2006, Toulouse, France, vol. III, pp. 560–563 (May 2006)Google Scholar
  11. 11.
    Wang, R., et al.: Stable and Orthonormal OJA Algorithm With Low Complexity. IEEE Signal Processing Letters 18(4), 211–214 (2011)CrossRefGoogle Scholar
  12. 12.
    Xiangyu, K., Changhua, H., Han, C.: A dual purpose principal and minor subspace gradient flow. IEEE Trans. on Signal Processing 60(1), 197 (2012)CrossRefGoogle Scholar
  13. 13.
    Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM (February 15, 2001)Google Scholar
  14. 14.
    Wang, R., Yao, M., Cheng, Z., Zou, H.: Interference cancellation in GPS receiver using noise subspace tracking algorithm. Signal Processing 91(2), 338–343 (2011)zbMATHCrossRefGoogle Scholar
  15. 15.
    Manton, J.H., Mareeks, I.Y., Attallah, S.: An analysis of the fast subspace tracking algorithm NOja. In: ICASSP, vol. 2, pp. 1101–1104 (2002)Google Scholar
  16. 16.
    Attallah, S., Abed-Meraim, K.: Fast Algorithms for Subspace Tracking. IEEE Signal Processing Letters 8(7), 203 (2001)CrossRefGoogle Scholar
  17. 17.
    Attallah, S.: Revisiting Adaptive Signal Subspace Estimation Based on Rayleigh’s Quotient. In: ICASSP, vol. 6, pp. 4009–4012 (2001)Google Scholar
  18. 18.
    Attallah, S., Abed-Meraim, K.: Subspace estimation and tracking using enhanced versions of Oja’s algorithm. In: SPAWC 2001, pp. 218–220 (2001)Google Scholar
  19. 19.
    Delmas, J.P.: Ch.4 Subspace tracking for signal processing. In: Adali, T., Haykin, S. (eds.) Adaptive Signal Processing: Next Generation Solutions. Wiley Interscience (April 2010)Google Scholar
  20. 20.
    Comon, P., Golub, G.H.: Tracking a few extreme singular values and vectors in signal processing. Proceedings of the IEEE 78(8), 1327–1343Google Scholar
  21. 21.
    Yang, J.F., Kaveh, M.: Adaptive eigensubspace algorithms for direction or frequency estimation and tracking. IEEE Trans. Acoust. Speech Signal Processing 36, 241–251 (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zhu Cheng
    • 1
    • 2
  • Zhan Wang
    • 1
  • Haitao Liu
    • 1
  • Majid Ahmadi
    • 2
  1. 1.School of Electron. Sci. & Eng.Nat. Univ. of Defense Technol.ChangshaChina
  2. 2.Department of ECEUniversity of WindsorWindsorCanada

Personalised recommendations