Advertisement

A Thermal-Aware Task Mapping Algorithm for Coarse Grain Reconfigurable Computing System

  • Shizhuo Tang
  • Naifeng Jing
  • Weiguang Sheng
  • Weifeng He
  • Zhigang Mao
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 337)

Abstract

Ever growing power density has made thermal effects one of the most crucial issues for modern VLSI designs, e.g., reports have shown that more than 50% of IC failures are related to thermal issues. However, thermal issues for Coarse Grain Reconfigurable Architectures (CGRA) have been few addressed. In this paper, a thermal-aware task mapping algorithm called Max-Min algorithm is developed for the REmus reconfigurable architecture, which uses compact thermal model based on equivalent thermal circuit to iteratively optimize the power dissipation on the modern CGRAs. Experiments based on Hotspot simulation show that the algorithm can reduce the maximum temperature by 3~9 and narrow the temperature distribution range by 7~15. Compared to previous intuitive random algorithm, the Max-Min algorithm can significantly reduce the number of optimization iterations while reserving the same result.

Keywords

Reconfigurable computing system thermal model thermal management Max-Min algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wei, H., Ghosh, S., Velusamy, S., Sankaranarayanan, K., Skadron, K., Stan, M.R.: HotSpot: a compact thermal modeling methodology for early-stage VLSI design. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 14(5), 501–513 (2006)CrossRefGoogle Scholar
  2. 2.
    Brooks, D., Martonosi, M.: Dynamic thermal management for high-performance microprocessors. In: The Seventh International Symposium on High-Performance Computer Architecture, HPCA 2001, pp. 171–182 (2001)Google Scholar
  3. 3.
    Kondo, M., Sasaki, H., Nakamura, H.: Improving fairness, throughput and energy-efficiency on a chip multiprocessor through DVFS. ACM SIGARCH Computer Architecture News 2007 35(1), 31–38 (2007)CrossRefGoogle Scholar
  4. 4.
    Seo, E., Jeong, J., Park, S., Lee, J.: Energy Efficient Scheduling of Real-Time Tasks on Multicore Processors. IEEE Transactions on Parallel and Distributed Systems 19(11), 1540–1552 (2008)CrossRefGoogle Scholar
  5. 5.
    Bautista, D., Sahuquillo, J., Hassan, H., Petit, S., Duato, J.: A simple power-aware scheduling for multicore systems when running real-time applications. In: IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2008, April 14-18, pp. 1–7 (2008)Google Scholar
  6. 6.
    Michaud, P., Sazeides, Y.: ATMI: Analytical model of temperature in microprocessors. In: Proc. MoBS, pp. 1–10 (2007)Google Scholar
  7. 7.
    Stan, M.R., Skadron, K., Barcella, M., Huang, W., Sankaranarayanan, K., Velusamy, S.: HotSpot: a dynamic compact thermal model at the processor-architecture level. Microelectronics Journal 34(12), 1153–1165 (2003)CrossRefGoogle Scholar
  8. 8.
    Singh, H., Lee, M.-H., Lu, G., Kurdahi, F.J., Bagherzadeh, N., Chaves Filho, E.M.: MorphoSys: an integrated reconfigurable system for data-parallel and computation-intensive applications. IEEE Transactions on Computers 49(5), 465–481 (2000)CrossRefGoogle Scholar
  9. 9.
    Jones, P.H., Lockwood, J.W., Cho, Y.H.: A Thermal Management and Profiling Method for Reconfigurable Hardware Applications. In: International Conference on Field Programmable Logic and Applications, FPL 2006, pp. 1–7 (August 2006)Google Scholar
  10. 10.
    Velusamy, S., Wei, H., Lach, J., Stan, M., Skadron, K.: Monitoring temperature in FPGA based SoCs. In: Proceedings of the 2005 IEEE International Conference on Computer Design: VLSI in Computers and Processors, ICCD 2005, October 2-5, pp. 634–637 (2005)Google Scholar
  11. 11.
    Xie, L., He, W., Jing, N., Mao, Z.: A thermal-aware task mapping flow for coarse-grain dynamic reconfigurable processor. In: 2011 IEEE International Symposium on Circuits and Systems (ISCAS), May 15-18, pp. 1952–1955 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shizhuo Tang
    • 1
  • Naifeng Jing
    • 1
  • Weiguang Sheng
    • 1
  • Weifeng He
    • 1
  • Zhigang Mao
    • 1
  1. 1.School of MicroelectronicsShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations