Skip to main content

A Word-Length Optimized Hardware Gaussian Random Number Generator Based on the Box-Muller Method

  • Conference paper

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 337))

Abstract

In this paper, we proposed a hardware Gaussian random number generator based on the Box-Muller method. To reduce the resource complexity, an efficient word-length optimization model is proposed to find out the optimal word-lengths for signals. Experimental results show that our word-length optimized Fixed-Point generator runs as fast as 403.7 MHz on a Xilinx Virtex-6 FPGA device and is capable of generating 2 samples every clock cycle, which is 12.6 times faster compared to its corresponding dedicated software version. It uses up 442 Slices, 1517 FFs and 1517 LUTs, which is only about 1% of the device and saves almost 85% and 71% of area in comparison to the corresponding IEEE double & single Floating-Point generators, respectively. The statistical quality of the Gaussian samples produced by our design is verified by the common empirical test: the chi-square (X 2) test.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lee, D., Villasenor, J.D., Luk, W., Leong, P.H.W.: A Hardware Gaussian Noise Generator Using the Box-Muller Method and Its Error Analysis. IEEE Transaction on Computers 55(6), 659–671 (2006)

    Article  Google Scholar 

  2. Bell, J.R.: Algorithm 334: Normal random deviates. Comm. ACM 11(7), 498 (1968)

    Article  Google Scholar 

  3. Box, G.E.P., Muller, M.E.: A note on the generation of random normal deviates. Annals Math. Stat. 29, 610–611 (1958)

    Article  MATH  Google Scholar 

  4. Tezuka, S., L’Ecuyer, P.: Efficient and portable combined Tausworthe random number generators. ACM Transactions on Modeling and Computer Simulation 1(2), 99–112 (1991)

    Article  MATH  Google Scholar 

  5. Brent, R.P.: Algorithm 488: A Gaussian pseudo-random number generator. Comm. ACM 17(12), 704–706 (1974)

    Article  MATH  Google Scholar 

  6. Gebhardt, F.: Generating normally distributed random numbers by inverting the normal distribution function. Math. Computation 18(86), 302–306 (1964)

    MathSciNet  Google Scholar 

  7. Zhang, G., Leong, P., Lee, D., Villasenor, J., Luk, W.: Ziggurat-Based Hardware Gaussian Random Number Generator. In: Proc. 16th IEEE Int. Conf. Field-Programmable Logic and its Applications, pp. 275–280 (2006)

    Google Scholar 

  8. Lee, D., Luk, W., Villasenor, J.D., Zhang, G., Leong, P.H.W.: A hardware Gaussian noise generator using the Wallace method. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 53(12), 911–920 (2007)

    Google Scholar 

  9. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Modeling and Computer Simulation 8(1), 3–30 (1998)

    Article  MATH  Google Scholar 

  10. Panneton, F., L’Ecuyer, P., Matsumoto, M.: Improved long-period generators based on linear recurrences modulo 2. ACM Trans. Mathematical Software 32(1), 1–16 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, Y., Jiang, J., Chow, P., Zhang, M.: Software/Hardware Framework for Generating Parallel Long-Period Random Numbers Using the WELL Method. In: Proc. 21st Int. Conf. Field Programmable Logic and Applications, pp. 110–115 (2011)

    Google Scholar 

  12. Muller, J.: Elementary Functions: Algorithms and Implementation, 2nd edn. Birkhauser, Boston (2006)

    MATH  Google Scholar 

  13. de Figueiredo, L., Stolfi, J.: Self-validated numerical methods and applications. In: Brazilian Mathematics Colloquium Monograph. IMPA, Brazil (1997)

    Google Scholar 

  14. Lee, D., Gaffar, A.A., Mencer, O., Luk, W.: MiniBit: Bit-Width Optimization via Affine Arithmetic. In: Proc. ACM/IEEE Design Automation Conf., pp. 837–840 (2005)

    Google Scholar 

  15. Sung, W., Kurn, K.: Simulation-based word-length optimization method for fixed-point digital signal processing systems. IEEE Trans. on Signal Processing 43(12), 3087–3090 (1995)

    Article  Google Scholar 

  16. Han, K., Eo, I., Kim, K., Cho, H.: Numerical word-length optimization for CDMA demodulator. In: IEEE Int. Symposium on Circuits and Systems, vol. 4, pp. 290–293 (2001)

    Google Scholar 

  17. Snedecor, G.W., Cochran, W.G.: Statistical Methods. Iowa State University Press (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, Y., Jiang, J., Zhang, M., Wei, S. (2013). A Word-Length Optimized Hardware Gaussian Random Number Generator Based on the Box-Muller Method. In: Xu, W., Xiao, L., Lu, P., Li, J., Zhang, C. (eds) Computer Engineering and Technology. NCCET 2012. Communications in Computer and Information Science, vol 337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35898-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35898-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35897-5

  • Online ISBN: 978-3-642-35898-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics