Advertisement

A Survey on Basic Connectors and Buffers

  • Roberto Bruni
  • Hernán Melgratti
  • Ugo Montanari
Chapter
  • 597 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7542)

Abstract

Recent years have witnessed an increasing interest about a rigorous modelling of (different classes of) connectors. Here, the term connector is used to name entities that can regulate the interaction of possibly heterogeneous components. Thus, connectors must take care of exogenous coordination, handling all those aspects that lie outside the scopes of individual components. This has led to the development of different frameworks that are used to specify, design, analyse, compare, prototype and implement connector-based middleware and a rigorous mathematical foundation of connectors is crucial for the analysis of exogenously coordinated systems. In this survey, we overview the main features of some notable theories of connectors, namely the algebra of stateless connectors, the tile model, Reo, BIP, nets with boundaries and the wire calculus. We discuss similarities, differences, mutual embedding and possible enhancements.

Keywords

Output Port Input Port Operational Semantic Monoidal Category Label Transition System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arbab, F.: Reo: a channel-based coordination model for component composition. Mathematical Structures in Computer Science 14(3), 329–366 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arbab, F., Bruni, R., Clarke, D., Lanese, I., Montanari, U.: Tiles for Reo. In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 37–55. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Arbab, F., Rutten, J.J.M.M.: A Coinductive Calculus of Component Connectors. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2002. LNCS, vol. 2755, pp. 34–55. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Baldan, P., Corradini, A., Ehrig, H., Heckel, R.: Compositional semantics for open Petri nets based on deterministic processes. Mathematical Structures in Computer Science 15(1), 1–35 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in BIP. In: Fourth IEEE International Conference on Software Engineering and Formal Methods, SEFM 2006, pp. 3–12. IEEE Computer Society (2006)Google Scholar
  7. 7.
    Bliudze, S., Sifakis, J.: The algebra of connectors - structuring interaction in BIP. IEEE Trans. Computers 57(10), 1315–1330 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bliudze, S., Sifakis, J.: Causal semantics for the algebra of connectors. Formal Methods in System Design 36(2), 167–194 (2010)CrossRefzbMATHGoogle Scholar
  9. 9.
    Bruni, R.: Tile Logic for Synchronized Rewriting of Concurrent Systems. PhD thesis, Computer Science Department, University of Pisa (1999)Google Scholar
  10. 10.
    Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theor. Comput. Sci. 366(1-2), 98–120 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bruni, R., Melgratti, H., Montanari, U.: Connector Algebras, Petri Nets, and BIP. In: Clarke, E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 19–38. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Bruni, R., Melgratti, H.C., Montanari, U.: A Connector Algebra for P/T Nets Interactions. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 312–326. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Bruni, R., Montanari, U.: Dynamic connectors for concurrency. Theor. Comput. Sci. 281(1-2), 131–176 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Clarke, D., Costa, D., Arbab, F.: Connector colouring I: Synchronisation and context dependency. Sci. Comput. Program. 66(3), 205–225 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ferrari, G.L., Montanari, U.: Tile formats for located and mobile systems. Inf. Comput. 156(1-2), 173–235 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fiadeiro, J.L., Maibaum, T.S.E.: Categorical semantics of parallel program design. Sci. Comput. Program. 28(2-3), 111–138 (1997)CrossRefzbMATHGoogle Scholar
  17. 17.
    Gadducci, F., Montanari, U.: The tile model. In: Proof, Language, and Interaction, pp. 133–166. The MIT Press (2000)Google Scholar
  18. 18.
    Garcia-Molina, H., Salem, K.: Sagas. In: Proceedings of the ACM Special Interest Group on Management of Data Annual Conference, pp. 249–259 (1987)Google Scholar
  19. 19.
    Jongmans, S.-S.T., Arbab, F.: Overview of thirty semantic formalisms for Reo. Scientific Annals of Computer Science 22(1), 201–251 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Katis, P., Sabadini, N., Walters, R.F.C.: Representing Place/Transition Nets in Span(Graph). In: Johnson, M. (ed.) AMAST 1997. LNCS, vol. 1349, pp. 322–336. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  21. 21.
    Kokash, N., Arbab, F.: Applying Reo to service coordination in long-running business transactions. In: SAC, pp. 1381–1382 (2009)Google Scholar
  22. 22.
    Montanari, U., Rossi, F.: Graph rewriting, constraint solving and tiles for coordinating distributed systems. Applied Categorical Structures 7(4), 333–370 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Petri, C.: Kommunikation mit Automaten. PhD thesis, Institut für Instrumentelle Mathematik, Bonn (1962)Google Scholar
  24. 24.
    Sobocinski, P.: A non-interleaving process calculus for multi-party synchronisation. In: ICE. EPTCS, vol. 12, pp. 87–98 (2009)Google Scholar
  25. 25.
    Sobociński, P.: Representations of Petri Net Interactions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 554–568. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  26. 26.
    Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Analysis of Web Services Composition Languages: The Case of BPEL4WS. In: Song, I.-Y., Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 200–215. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Roberto Bruni
    • 1
  • Hernán Melgratti
    • 2
  • Ugo Montanari
    • 1
  1. 1.Dipartimento di InformaticaUniversità di PisaItaly
  2. 2.Departamento de ComputaciónUniversidad de Buenos Aires - ConicetArgentina

Personalised recommendations