Skip to main content

Fingerprint Matching Based on Texture Feature

  • Conference paper
Book cover Mobile Communication and Power Engineering (AIM 2012)

Abstract

This paper presents a texture feature based algorithm for fingerprint matching. Our proposed fingerprint-matching algorithm employs texture features like Correlation, Inverse Difference Moment, and Entropy measure of fingerprint images. The proposed textural features of two fingerprints have been compared to compute the similarities at a given threshold. The algorithm has been tested on the FVC2002 DB2_B database. The proposed algorithm is evaluated using GAR and FAR. GAR of 97.5 % is observed with 8.53% of FAR at a threshold value of 0.9. The proposed textural Feature based matching will enhance GAR at the cost of slightly higher value of FAR and hence gives the best GAR at reasonable value of FAR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Transactions on Circuits and Systems for Video Technology 14(3), 4–20 (2004)

    Article  Google Scholar 

  2. Wayman, J.L.: Fundamentals of biometric authentication technologies. Int. J. Image Graphics 1(1), 93–113 (2001)

    Article  Google Scholar 

  3. Berry, J., Stoney, D.A.: The history and development of fingerprinting. In: Lee, H.C., Gaensslen, R.E. (eds.) Advances in Fingerprint Technology, 2nd edn., pp. 1–40. CRC Press, Florida (2001)

    Google Scholar 

  4. Federal Bureau of Investigation, The Science of Fingerprints:Classification and Uses, Washington, D.C, U.S. Government Printing Office (1984)

    Google Scholar 

  5. Jain, A.K., Prabhakar, S., Pankanti, S.: Filterbank – based fingerprint matching. IEEE Transactions on Image Processing 9, 846–859 (2000)

    Article  Google Scholar 

  6. Ravichandran, G., Casasent, D.: Advanced in-plane rotation-invariant correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(4), 415–420 (1994)

    Article  Google Scholar 

  7. Bazen, A.M., Verwaaijen, G.T.B., Gerez, S.H., Veelenturf, L.P.J., van der Zwaag, B.J.: A Correlation-Based Fingerprint Verication System. In: Proc. Workshop on Circuits Systems and Signal Processing, pp. 205–213 (2000)

    Google Scholar 

  8. Jain, A.K., Ross, A.: Fingerprint Matching Using Minutiae and Texture Features. In: Proceeding of International Conference on Image Processing (ICIP), pp. 282–285 (2001)

    Google Scholar 

  9. Aggarwal, G., Ratha, N.K., Jea, T.-Y., Bolle, R.M.: Gradient based textural characterization of fingerprints. In: Proceedings of IEEE International Conference on Biometrics: Theory, Applications and Systems (September-October 2008)

    Google Scholar 

  10. Arivazhagan, S., AruIFiora, T.G., Ganesan, L.: Fingerprint Verification using Gabor Co-occurrence Features. In: International Conference on Computational Intelligence and Multimedia Applications, pp. 281–285 (2007)

    Google Scholar 

  11. Yazdi, M., Gheysari, K.: A New Approach for the Fingerprint Classification Based on Gray-Level Co-Occurrence Matrix. International Journal of Computer and Information Science and Engineering (2008)

    Google Scholar 

  12. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural Features for Image Classification. IEEE Transactions on Systems, Man and Cybernetics 3, 610–621 (1973)

    Article  Google Scholar 

  13. Kumar, R., Chandra, P., Hanmandlu, M.: Fingerprint Matching Based on Orientation Feature. Advanced Materials Research Journal 403-408, 888–894 (2011), doi:10.4028/www.scientific.net/AMR.403-408.888

    Google Scholar 

  14. Kumar, R., Chandra, P., Hanmandlu, M.: Fingerprint Singular Point Detection Using Orientation Field Reliability. Advanced Materials Research Journal 403-408, 4499–4506 (2011), doi:10.4028/www.scientific.net/AMR.403-408.4499

    Google Scholar 

  15. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer (June 2009)

    Google Scholar 

  16. Hong, L., Wan, Y., Jain, A.: Fingerprint Image Enhancement: Algorithm and Performance Evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8) (August 1998)

    Google Scholar 

  17. Fingerprint Verification Competition (FVC), http://bias.csr.unibo.it/fvc2002/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kumar, R., Chandra, P., Hanmandlu, M. (2013). Fingerprint Matching Based on Texture Feature. In: Das, V.V., Chaba, Y. (eds) Mobile Communication and Power Engineering. AIM 2012. Communications in Computer and Information Science, vol 296. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35864-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35864-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35863-0

  • Online ISBN: 978-3-642-35864-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics