A New Way for Hierarchical and Topological Clustering
- 544 Downloads
Abstract
Clustering is one of the most important unsupervised learning problems. It deals with finding a structure in a collection of unlabeled data points. Hierarchical clustering algorithms are typically more effective in detecting the true clustering structure of a structured data set than partitioning algorithms. We find in literature several important research in hierarchical cluster analysis [Jain et al., 1999]. Hierarchical methods can be further divided to agglomerative and divisive algorithms, corresponding to bottom-up and top-down strategies, to build a hierarchical clustering tree. Another works concerning hierarchical classifiers are presented in [Jiang et al., 2010]. In this paper we propose a new way to build a set of self-organized hierarchical trees.
Keywords
Cost Function Child Node Rand Index Hierarchical Cluster Algorithm Topological ClusterPreview
Unable to display preview. Download preview PDF.
References
- [Azzag et al., 2007]Azzag, H., Venturini, G., Oliver, A., Guinot, C.: A hierarchical ant based clustering algorithm and its use in three real-world applications. European Journal of Operational Research 179(3), 906–922 (2007)zbMATHCrossRefGoogle Scholar
- [Bishop et al., 1998]Bishop, C.M., Svensén, M., Williams, C.K.I.: Gtm: The generative topographic mapping. Neural Computation 10(1), 215–234 (1998)CrossRefGoogle Scholar
- [Blake and Merz, 1998]Blake, C., Merz, C.: UCI repository of machine learning databases (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html
- [Carey et al., 2003]Carey, M., Heesch, D.C., Rüger, S.M.: Info navigator: A visualization tool for document searching and browsing. In: Proc. of the Intl. Conf. on Distributed Multimedia Systems (DMS), pp. 23–28 (2003)Google Scholar
- [Davies and Bouldin, 1979]Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Transactions on Pattern Recognition and Machine Intelligence 1(2), 224–227 (1979)CrossRefGoogle Scholar
- [Dittenbach et al., 2000]Dittenbach, M., Merkl, D., Rauber, A.: The growing hierarchical self-organizing map, pp. 15–19. IEEE Computer Society (2000)Google Scholar
- [Hammer et al., 2009]Hammer, B., Hasenfuss, A., Rossi, F.: Median Topographic Maps for Biomedical Data Sets. In: Biehl, M., Hammer, B., Verleysen, M., Villmann, T. (eds.) Similarity-Based Clustering. LNCS, vol. 5400, pp. 92–117. Springer, Heidelberg (2009)CrossRefGoogle Scholar
- [Jain et al., 1999]Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31(3), 264–323 (1999)CrossRefGoogle Scholar
- [Jiang et al., 2010]Jiang, W., Raś, Z.W., Wieczorkowska, A.A.: Clustering Driven Cascade Classifiers for Multi-indexing of Polyphonic Music by Instruments. In: Raś, Z.W., Wieczorkowska, A.A. (eds.) Advances in Music Information Retrieval. SCI, vol. 274, pp. 19–38. Springer, Heidelberg (2010)CrossRefGoogle Scholar
- [Johnson and Shneiderman, 1991]Johnson, B., Shneiderman, B.: Tree-maps: a space-filling approach to the visualization of hierarchical information structures. In: Proceedings of the 2nd Conference on Visualization 1991, VIS 1991, pp. 284–291. IEEE Computer Society Press, Los Alamitos (1991)Google Scholar
- [Kohonen et al., 2001]Kohonen, T., Schroeder, M.R., Huang, T.S. (eds.): Self-Organizing Maps, 3rd edn. Springer-Verlag New York, Inc., Secaucus (2001)zbMATHGoogle Scholar
- [Koikkalainen and Horppu, 2007]Koikkalainen, P., Horppu, I.: Handling missing data with the tree-structured self-organizing map. In: IJCNN, pp. 2289–2294 (2007)Google Scholar
- [Peura, 1998]Peura, M.: The self-organizing map of trees. Neural Process. Lett. 8(2), 155–162 (1998)CrossRefGoogle Scholar
- [Robertson et al., 1991]Robertson, G.G., Mackinlay, J.D., Card, S.K.: Cone trees: animated 3d visualizations of hierarchical information. In: CHI 1991: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 189–194. ACM Press, New York (1991)Google Scholar
- [Rossi and Villa-Vialaneix, 2010]Rossi, F., Villa-Vialaneix, N.: Optimizing an organized modularity measure for topographic graph clustering: A deterministic annealing approach. Neurocomput. 73, 1142–1163 (2010)CrossRefGoogle Scholar
- [Samsonova et al., 2006]Samsonova, E.V., Kok, J.N., Ijzerman, A.P.: Treesom: Cluster analysis in the self-organizing map. neural networks. American Economic Review 82, 1162–1176 (2006)Google Scholar
- [Saporta and Youness, 2002]Saporta, G., Youness, G.: Comparing two partitions: Some proposals and experiments. In: Proceedings in Computational Statistics, pp. 243–248. Physica Verlag (2002)Google Scholar
- [Shneiderman, 1992]Shneiderman, B.: Tree visualization with tree-maps: A 2-D space-filling approach. ACM Transactions on Graphics 11(1), 92–99 (1992)zbMATHCrossRefGoogle Scholar
- [Slimane et al., 2003]Slimane, A.M., Azzag, H., Monmarché, N., Slimane, M., Venturini, G.: Anttree: a new model for clustering with artificial ants. In: IEEE Congress on Evolutionary Computation, pp. 2642–2647. IEEE Press (2003)Google Scholar
- [Vesanto and Alhoniemi, 2000]Vesanto, J., Alhoniemi, E.: Clustering of the self-organizing map. IEEE Transactions on Neural Networks 11(3), 586–600 (2000)CrossRefGoogle Scholar