Advertisement

A New Way for Hierarchical and Topological Clustering

  • Hanane AzzagEmail author
  • Mustapha Lebbah
Chapter
  • 544 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 471)

Abstract

Clustering is one of the most important unsupervised learning problems. It deals with finding a structure in a collection of unlabeled data points. Hierarchical clustering algorithms are typically more effective in detecting the true clustering structure of a structured data set than partitioning algorithms. We find in literature several important research in hierarchical cluster analysis [Jain et al., 1999]. Hierarchical methods can be further divided to agglomerative and divisive algorithms, corresponding to bottom-up and top-down strategies, to build a hierarchical clustering tree. Another works concerning hierarchical classifiers are presented in [Jiang et al., 2010]. In this paper we propose a new way to build a set of self-organized hierarchical trees.

Keywords

Cost Function Child Node Rand Index Hierarchical Cluster Algorithm Topological Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Azzag et al., 2007]
    Azzag, H., Venturini, G., Oliver, A., Guinot, C.: A hierarchical ant based clustering algorithm and its use in three real-world applications. European Journal of Operational Research 179(3), 906–922 (2007)zbMATHCrossRefGoogle Scholar
  2. [Bishop et al., 1998]
    Bishop, C.M., Svensén, M., Williams, C.K.I.: Gtm: The generative topographic mapping. Neural Computation 10(1), 215–234 (1998)CrossRefGoogle Scholar
  3. [Blake and Merz, 1998]
    Blake, C., Merz, C.: UCI repository of machine learning databases (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html
  4. [Carey et al., 2003]
    Carey, M., Heesch, D.C., Rüger, S.M.: Info navigator: A visualization tool for document searching and browsing. In: Proc. of the Intl. Conf. on Distributed Multimedia Systems (DMS), pp. 23–28 (2003)Google Scholar
  5. [Davies and Bouldin, 1979]
    Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Transactions on Pattern Recognition and Machine Intelligence 1(2), 224–227 (1979)CrossRefGoogle Scholar
  6. [Dittenbach et al., 2000]
    Dittenbach, M., Merkl, D., Rauber, A.: The growing hierarchical self-organizing map, pp. 15–19. IEEE Computer Society (2000)Google Scholar
  7. [Hammer et al., 2009]
    Hammer, B., Hasenfuss, A., Rossi, F.: Median Topographic Maps for Biomedical Data Sets. In: Biehl, M., Hammer, B., Verleysen, M., Villmann, T. (eds.) Similarity-Based Clustering. LNCS, vol. 5400, pp. 92–117. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. [Jain et al., 1999]
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31(3), 264–323 (1999)CrossRefGoogle Scholar
  9. [Jiang et al., 2010]
    Jiang, W., Raś, Z.W., Wieczorkowska, A.A.: Clustering Driven Cascade Classifiers for Multi-indexing of Polyphonic Music by Instruments. In: Raś, Z.W., Wieczorkowska, A.A. (eds.) Advances in Music Information Retrieval. SCI, vol. 274, pp. 19–38. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. [Johnson and Shneiderman, 1991]
    Johnson, B., Shneiderman, B.: Tree-maps: a space-filling approach to the visualization of hierarchical information structures. In: Proceedings of the 2nd Conference on Visualization 1991, VIS 1991, pp. 284–291. IEEE Computer Society Press, Los Alamitos (1991)Google Scholar
  11. [Kohonen et al., 2001]
    Kohonen, T., Schroeder, M.R., Huang, T.S. (eds.): Self-Organizing Maps, 3rd edn. Springer-Verlag New York, Inc., Secaucus (2001)zbMATHGoogle Scholar
  12. [Koikkalainen and Horppu, 2007]
    Koikkalainen, P., Horppu, I.: Handling missing data with the tree-structured self-organizing map. In: IJCNN, pp. 2289–2294 (2007)Google Scholar
  13. [Peura, 1998]
    Peura, M.: The self-organizing map of trees. Neural Process. Lett. 8(2), 155–162 (1998)CrossRefGoogle Scholar
  14. [Robertson et al., 1991]
    Robertson, G.G., Mackinlay, J.D., Card, S.K.: Cone trees: animated 3d visualizations of hierarchical information. In: CHI 1991: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 189–194. ACM Press, New York (1991)Google Scholar
  15. [Rossi and Villa-Vialaneix, 2010]
    Rossi, F., Villa-Vialaneix, N.: Optimizing an organized modularity measure for topographic graph clustering: A deterministic annealing approach. Neurocomput. 73, 1142–1163 (2010)CrossRefGoogle Scholar
  16. [Samsonova et al., 2006]
    Samsonova, E.V., Kok, J.N., Ijzerman, A.P.: Treesom: Cluster analysis in the self-organizing map. neural networks. American Economic Review 82, 1162–1176 (2006)Google Scholar
  17. [Saporta and Youness, 2002]
    Saporta, G., Youness, G.: Comparing two partitions: Some proposals and experiments. In: Proceedings in Computational Statistics, pp. 243–248. Physica Verlag (2002)Google Scholar
  18. [Shneiderman, 1992]
    Shneiderman, B.: Tree visualization with tree-maps: A 2-D space-filling approach. ACM Transactions on Graphics 11(1), 92–99 (1992)zbMATHCrossRefGoogle Scholar
  19. [Slimane et al., 2003]
    Slimane, A.M., Azzag, H., Monmarché, N., Slimane, M., Venturini, G.: Anttree: a new model for clustering with artificial ants. In: IEEE Congress on Evolutionary Computation, pp. 2642–2647. IEEE Press (2003)Google Scholar
  20. [Vesanto and Alhoniemi, 2000]
    Vesanto, J., Alhoniemi, E.: Clustering of the self-organizing map. IEEE Transactions on Neural Networks 11(3), 586–600 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratoire d’Informatique de Paris-Nord (LIPN), CNRS(UMR 7030)Université Paris 13, Sorbonne Paris CitéVilletaneuseFrance

Personalised recommendations