Advertisement

User Centered Cognitive Maps

  • Lionel ChauvinEmail author
  • David Genest
  • Aymeric Le Dorze
  • Stéphane Loiseau
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 471)

Abstract

Two kinds of influence graphs are commonly used in artificial intelligence to modelize influence networks: bayesian networks [Naïm et al., 2004] and cognitive maps [Tolman, 1948]. Influence graphs provide mechanisms to highlight the influence between concepts. Cognitive maps represent a concept by a text and an influence by an arc to which a value is associated.

Keywords

Conceptual Graph Elementary Concept Shared View Secondary Road Shared Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Axelrod, R.: Structure of decision: the cognitive maps of political elites, Princeton, N.J (1976)Google Scholar
  2. 2.
    Baget, J.-F., Mugnier, M.-L.: The SG Family: extensions of simple conceptual graphs. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence, pp. 205–210. Morgan Kaufmann Publishers (2001)Google Scholar
  3. 3.
    Buzan, T., Buzan, B.: The Mind Map Book. BBC Active (2003)Google Scholar
  4. 4.
    Celik, F.D., Ozesmi, U., Akdogan, A.: Participatory ecosystem management planning at tuzla lake (turkey) using fuzzy cognitive mapping (2005) Google Scholar
  5. 5.
    Chaib-draa, B.: Causal Maps: Theory, Implementation and Practical Applications in Multiagent Environments. IEEE Transactions on Knowledge and Data Engineering 14(2), 1–17 (2002)Google Scholar
  6. 6.
    Chauvin, L., Genest, D., Loiseau, S.: Contextual Cognitive Map. In: Eklund, P., Haemmerlé, O. (eds.) ICCS 2008. LNCS (LNAI), vol. 5113, pp. 231–241. Springer, Heidelberg (2008a)CrossRefGoogle Scholar
  7. 7.
    Chauvin, L., Genest, D., Loiseau, S.: Ontological cognitive map. In: ICTAI 2008, vol. 2(1), pp. 225–232 (2008b)Google Scholar
  8. 8.
    Dickerson, J.A., Kosko, B.: Virtual worlds as fuzzy cognitive maps. Presence 3(2), 73–89 (1994)Google Scholar
  9. 9.
    Eden, C.: Cognitive mapping. European Journal of Operational Research 36, 1–13 (1988)CrossRefGoogle Scholar
  10. 10.
    Genest, D., Loiseau, S.: Modélisation, classification et propagation dans des réseaux d’influence. Technique et Science Informatiques 26(3-4), 471–496 (2007)CrossRefGoogle Scholar
  11. 11.
    Huff, A.S., Fiol, M.: Maps for managers: where are we? where do we go from here? Journal of Management Studies 29, 267–285 (1992)Google Scholar
  12. 12.
    Jung, J.J., Jung, K.-Y., Jo, G.-S.: Ontological Cognitive Map for Sharing Knowledge between Heterogeneous Businesses. In: Yazıcı, A., Şener, C. (eds.) ISCIS 2003. LNCS, vol. 2869, pp. 91–98. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Kosko, B.: Fuzzy cognitive maps. International Journal of Man-Machines Studies 24, 65–75 (1986)zbMATHCrossRefGoogle Scholar
  14. 14.
    Levi, A., Tetlock, P.E.: A cognitive analysis of japan’s 1941 decision for war. The Journal of Conflict Resolution 24(2), 195–211 (1980)CrossRefGoogle Scholar
  15. 15.
    Naïm, P., Wuillemin, P.-H., Leray, P., Pourret, O., Becker, A.: Réseaux bayésiens. Eyrolles, Paris (2004)Google Scholar
  16. 16.
    Novak, J.D., Gowin, D.B.: Learning how to learn. Cambridge University Press, New York (1984)CrossRefGoogle Scholar
  17. 17.
    Paradice, D.: Simon: an object oriented information system for coordinating strategies and operations. IEEE Transaction on System, Man and Cybernetics 22(3), 513–525 (1992)CrossRefGoogle Scholar
  18. 18.
    Parenthoen, M., Tisseau, J., Reignier, P., Dory, F.: Agent’s perception and charactors in virtual worlds: put fuzzy cognitive maps to work. In: Proceedings VRIC, pp. 11–18 (2001)Google Scholar
  19. 19.
    Pinson, S., Anacleto, J., Moraitis, P.: A distributed decision support system for strategic planning. International Journal of Decision Support Systems 20(1), 35–51 (1997)CrossRefGoogle Scholar
  20. 20.
    Poignonec, D.: Apport de la combinaison cartographie cognitive/ontologie dans la compréhension de la perception du fonctionnement d’un écosystème récifo-lagonaire de Nouvelle-Calédonie par les acteurs locaux. PhD thesis, ENSA Rennes France (2006)Google Scholar
  21. 21.
    Redish, A.D.: Beyond the Cognitive Map: From Place Cells to Episodic Memory. MIT Press (1999)Google Scholar
  22. 22.
    Ribière, M., Dieng-Kuntz, R.: A Viewpoint Model for Cooperative Building of an Ontology. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp. 220–234. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Rommelfanger, J.: The advantages of fuzzy optimization models in practical use. Fuzzy Optimization and Decision Making 3, 295–309 (2004)zbMATHCrossRefGoogle Scholar
  24. 24.
    Ronarc’h, N., Rozec, G., Guillet, F., Nédélec, A., Baquedano, S., Philippé, V.: Modélisation des connaissances émotionnelles par les cartes cognitives floues. In: Atelier Modélisation Conférence EGC, pp. 11–21 (2005)Google Scholar
  25. 25.
    Satur, R., Liu, Z.-Q.: A contextual fuzzy cognitive map framework for geographic information systems. IEEE Transactions on Fuzzy Systems 7(5), 481–494 (1999)CrossRefGoogle Scholar
  26. 26.
    Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison Wesley (1984)Google Scholar
  27. 27.
    Tisseau, J.: Réalité virtuelle, autonomie in virtuo, Habilitation á diriger des recherches. PhD thesis (2001)Google Scholar
  28. 28.
    Tolman, E.C.: Cognitive maps in rats and men. The Psychological Review 55(4), 189–208 (1948)CrossRefGoogle Scholar
  29. 29.
    Truck, I.: Approche symbolique et floue des modificateurs linguistiques et leur lien avec l’aggregation. PhD thesis, Université de Reims, France (2002)Google Scholar
  30. 30.
    Turban, E.: Decision support and expert system (1993)Google Scholar
  31. 31.
    Vasan, P.: Application of fuzzy linear “programming in production plannaning”. Fuzzy Optimization and Decision Making 3, 229–241 (2003)CrossRefGoogle Scholar
  32. 32.
    Zhang, W.: Npn fuzzy sets and npn qualitative-algebra: A computational framework for bi-cognitive modeling and multiagent decision analysis. IEEE Transactions on Systems, Man, and Cybernetics 26(8), 561–575 (1996)Google Scholar
  33. 33.
    Zhang, W., Chen, S., Wang, W., King, R.S.: A cognitive-map-based approach to the coordination of distributed cooperative agents, vol. 22(1), pp. 103–114 (1992)Google Scholar
  34. 34.
    Zhou, S., Zhang, J.Y., Liu, Z.-Q.: Quotient fcms – a decomposition theory for fuzzy cognitive maps. IEEE Transactions on Fuzzy Systems 11(5), 593–604 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lionel Chauvin
    • 1
    Email author
  • David Genest
    • 1
  • Aymeric Le Dorze
    • 1
  • Stéphane Loiseau
    • 1
  1. 1.LERIAUFR SciencesAngers Cedex 01France

Personalised recommendations