Efficient Identity-Based and Authenticated Key Agreement Protocol

  • Yongge Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7420)


Several identity based and implicitly authenticated key agreement protocols have been proposed in recent years and none of them has achieved all required security properties. It remains an open question to design secure identity based and implicitly authenticated key agreement protocols. In this paper, we propose an efficient identity-based and authenticated key agreement protocol IDAK using Weil/Tate pairing. The security of IDAK is proved in Bellare-Rogaway model. Several required properties for key agreement protocols are not implied by the Bellare-Rogaway model. We proved these properties for IDAK separately.


Random Oracle Signcryption Scheme Perfect Forward Secrecy Bilinear Group Polynomial Time Probabilistic Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bellare, M., Rogaway, P.: Random oracles are practical: a paradigms for designing efficient protocols. In: Proc. 1st ACM CCS, pp. 62–73. ACM Press (1993)Google Scholar
  2. 2.
    Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994)Google Scholar
  3. 3.
    Boneh, D.: The Decision Diffie-Hellman Problem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. SIAM J. Computing 32(3), 586–615 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Chen, L., Kudla, C.: Identity based authenticated key agreement protocols from pairing. In: Proc. 16th IEEE Security Foundations Workshop, pp. 219–233 (2003)Google Scholar
  7. 7.
    Cheng, Z., Nistazakis, M., Comley, R., Vasiu, L.: On indistinguishability-based security model of key agreement protocols-simple cases. In: Proc. of ACNS 2004 (2004)Google Scholar
  8. 8.
    Joux, A.: A One Round Protocol for Tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Krawczyk, H.: HMQV: A High-Performance Secure Diffie-Hellman Protocol. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    McCullagh, N., Barreto, P.S.L.M.: A New Two-Party Identity-Based Authenticated Key Agreement. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 262–274. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    McCullagh, P., Barreto, P.: A new two-party identity-based authenticated key agreement,
  12. 12.
    Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. In: 38th Annual Symposium on Foundations of Computer Science. IEEE Press (1998)Google Scholar
  13. 13.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptology 13(3), 361–396 (2000)zbMATHCrossRefGoogle Scholar
  14. 14.
    Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: 2000 Symp. on Cryptography and Information Security (SCIS 2000), Okinawa, Japan (2000)Google Scholar
  15. 15.
    Scott, M.: Authenticated ID-based key exchange and remote log-in with insecure token and PIN number,
  16. 16.
    Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  17. 17.
    Smart, N.P.: Identity-based authenticated key agreement protocol based on Weil pairing. Electronics Letters 38(13), 630–632 (2002)zbMATHCrossRefGoogle Scholar
  18. 18.
    Tanaka, K., Okamoto, E.: Key distribution system for mail systems using ID-related information directory. Computers and Security 10, 25–33 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yongge Wang
    • 1
  1. 1.UNC CharlotteUSA

Personalised recommendations