Practicability of HFE Scheme for Wireless Sensor Network

  • Pradheepkumar Singaravelu
  • Shekhar Verma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7420)


In this paper, the energy consumption of Hidden field equation (HFE) multivariate scheme in wireless sensor networks (WSN) has been evaluated. Security provisioning in WSN requires balancing between two conflicting goals – security strength and resource efficiency. Most of the cryptosystems with security strength required in a WSN are highly resource intensive. Cryptographic operations consume processor power, time and memory space for storage of intermediate and final output. The cryptographic bits also constitute communication overhead that induces delay and decreases the effective throughput.To lessen the load on the resource constrained WSN without compromising security, HFE multivariate scheme is proposed. HFE is a multivariate cryptosystems in which linear equations are solved to obtain successive sets of central variables. The small number of operations and limited memory requirements make this scheme a potential candidate for security provisioning in WSN. Analysis and simulation results show that the scheme can be implemented on resource constrained sensor nodes. Moreover, the decrease in throughput and increase in delay due to HFE scheme are within the tolerable limits of WSN applications.


Wireless Sensor Network Multivariate Elliptic Curve Cryptography Rainbow HFE 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Communications Magazine, 102–114 (August 2002)Google Scholar
  2. 2.
    Chan, H., Perrig, A.: Security and privacy in sensor networks. IEEE Computer Magazine, 103–105 (2003)Google Scholar
  3. 3.
    Lee, J., Kapitanova, K., Son, S.H.: The Price of Security in Wireless Sensor Networks. Elsevier Journal on Computer Networks 54, 2967–2978 (2010)CrossRefGoogle Scholar
  4. 4.
    Ganesan, P., Venugopalan, R., Peddabachagari, P., Dean, A., Mueller, F., Sichitiu, M.: Analyzing and Modeling Encryption Overhead for Sensor Network Nodes. In: Proceedings of the Second ACM International Conference on Wireless Sensor Networks and Applications, pp. 151–159 (2003)Google Scholar
  5. 5.
    Guimaraes, G., Souto, E., Sadok, D., Kelner, J.: Evaluation of Security Mechanisms in Wireless Sensor Networks. In: Proceedings of the Systems Communications, pp. 428–433 (2005)Google Scholar
  6. 6.
    Singaravelu, P., Verma, S.: Efficacy of Multivariate Cryptosystems for DWSN. In: Proceedings of the Second International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace and Electronic Systems Technology (Wireless VITAE), pp. 1–4 (March 2011)Google Scholar
  7. 7.
    Chang, C.C., Muftic, S., David, J., Nagel, D.J.: Measurement of Energy Costs of Security in Wireless Sensor Nodes. In: Proceedings of Sixteenth International Conference on Computer Communications and Networks, pp. 95–102 (2007)Google Scholar
  8. 8.
    Chang, C.-C., Nagel, D.J., Muftic, S.: Balancing Security and Energy Consumption in Wireless Sensor Networks. In: Zhang, H., Olariu, S., Cao, J., Johnson, D.B. (eds.) MSN 2007. LNCS, vol. 4864, pp. 469–480. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Fan, X., Gong, G.: Accelerating Signature-Based Broadcast Authentication for Wireless Sensor Networks. Journal on Ad Hoc Networks (2011)Google Scholar
  10. 10.
    Ren, K., Yu, S., Lou, W., Zhang, Y.: Multi-User Broadcast Authentication in Wireless Sensor Networks. IEEE Transactions on Vehicular Technology 58, 4554–4564 (2009)CrossRefGoogle Scholar
  11. 11.
    Cao, X., Kou, W., Dang, L., Zhao, B.: IMBAS: Identity-Based Multi-User Broadcast Authentication in Wireless Sensor Networks. Journal on Computer Communications 31, 659–667 (2008)CrossRefGoogle Scholar
  12. 12.
    Mohatar, O.D., Sabater, A.F., Sierra, J.M.: A Light-Weight Authentication Scheme for Wireless Sensor Networks. Journal on Ad Hoc Networks 9, 727–735 (2011)CrossRefGoogle Scholar
  13. 13.
    Yamakawa, Y., Cui, Y., Kobara, K., Imai, H.: Lightweight Broadcast Authentication Protocols Reconsidered. In: Proceedings of the IEEE Wireless Communications & Networking Conference, pp. 1–6 (2009)Google Scholar
  14. 14.
    Kwon, T., Hong, J.: Secure and Efficient Broadcast Authentication in Wireless Sensor Networks. IEEE Transactions on Computers 59, 1120–1133 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Arazi, B.: Message Authentication in Computationally Constrained Environments. Journal of IEEE Transactions on Mobile Computing 8(7), 968–974 (2009)CrossRefGoogle Scholar
  16. 16.
    Claycomb, W.R., Shin, D.: A Novel Node Level Security Policy Framework for Wireless Sensor Networks. Journal of Network and Computer Applications 34, 418–428 (2011)CrossRefGoogle Scholar
  17. 17.
    Boudriga, N., Obaidat, M.S.: Mobility, Sensing, and Security Management in Wireless Ad Hoc Sensor Systems. International Journal on Computers and Electrical Engineering 32, 266–276 (2006)CrossRefzbMATHGoogle Scholar
  18. 18.
    Su, R., Cao, Z.: An Efficient Anonymous Authentication Mechanism for Delay Tolerant Networks. International Journal on Computers and Electrical Engineering 36, 435–441 (2010)CrossRefzbMATHGoogle Scholar
  19. 19.
    You, Z., Xie, X.: A Novel Group Key Agreement Protocol for Wireless Mesh Network. International Journal on Computers and Electrical Engineering 37, 218–239 (2011)CrossRefzbMATHGoogle Scholar
  20. 20.
    Roman, R., Alcaraz, C., Lopez, J., Sklavos, N.: Key Management Systems for Sensor Networks in the Context of the Internet of Things. Journal on Computers and Electrical Engineering 37, 147–159 (2011)CrossRefGoogle Scholar
  21. 21.
    Yoon, E.J., Yoo, K.Y., Ha, K.S.: A User Friendly Authentication Scheme with Anonymity for Wireless Communications. Journal on Computers and Electrical Engineering 37, 356–364 (2011)CrossRefGoogle Scholar
  22. 22.
    Delgosha, F., Fekri, F.: A Multivariate Key-Establishment Scheme for Wireless Sensor Network. IEEE Transactions on Wireless Communications 8, 1814–1824 (2009)CrossRefGoogle Scholar
  23. 23.
    Ding, J., Gower, J.E., Schmidt, D.S.: Multivariate Public-Key Cryptosystems. In: International Conference on the Algebra and its Application, pp. 79–94 (2005)Google Scholar
  24. 24.
    Delgosha, F., Fekri, F.: Public-Key Cryptography using Paraunitary Matrices. IEEE Transaction on Signal Processing 54, 3489–3504 (2006)CrossRefGoogle Scholar
  25. 25.
    Patarin, J., Goubin, L., Courtois, N.T.: C *_ +  and HM: Variations around Two Schemes of T. Matsumoto and H. Imai. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 35–50. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  26. 26.
    Dubois, V., Granboulan, L., Stern, J.: An Efficient Provable Distinguisher for HFE. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 156–167. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Dubois, V., Granboulan, L., Stern, J.: Cryptanalysis of HFE with Internal Perturbation. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 249–265. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  28. 28.
    Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of Asymmetric Algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)Google Scholar
  29. 29.
    Ding, J., Schmidt, D., Werner, F.: Algebraic Attack on HFE Revisited. In: Proceedings of the Eleventh International Conference on Information Security, pp. 215–227 (2008)Google Scholar
  30. 30.
    Kipnis, A., Shamir, A.: Cryptanalysis of the Oil & Vinegar Signature Scheme. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer, Heidelberg (1998)Google Scholar
  31. 31.
    Ding, J., Schmidt, D.: Rainbow, a New Multivariable Polynomial Signature Scheme. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  32. 32.
    Billet, O., Gilbert, H.: Cryptanalysis of Rainbow. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 336–347. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  33. 33.
    Braeken, A., Wolf, C., Preneel, B.: A Study of the Security of Unbalanced Oil and Vinegar Signature Schemes. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 29–43. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  34. 34.
    Balasubramanian, S., Carter, H.W., Bogdanov, A., Rupp, A., Ding, J.: Multivariate Signature Generation in Hardware: The Case of Rainbow. In: International Symposium on Field Programmable Custom Computing Machines, Palo Alto, CA, pp. 281–282 (December 2008)Google Scholar
  35. 35.
    Ding, J., Wolf, C., Yang, B.-Y.: ℓ-Invertible Cycles for \({\mathcal M}{\rm ultivariate}\) Quadratic (MQ) Public Key Cryptography. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 266–281. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pradheepkumar Singaravelu
    • 1
  • Shekhar Verma
    • 1
  1. 1.Indian Institute of Information Technology-AllahabadAllahabadIndia

Personalised recommendations