Skip to main content

Investigation of Excitons by NMR Spectroscopy Methods

  • Chapter
Resonance Effects of Excitons and Electrons

Part of the book series: Lecture Notes in Physics ((LNP,volume 869))

Abstract

Excitons in crystals may affect the NMR spectra in all cases when hyperfine interaction of the charge carriers forming excitons with the nuclear spins takes place. The modulation of this interaction by the lattice vibrations influences the nuclear spin relaxation rate through the excitons. The local magnetic field of the excitons also shifts the energy of the nuclear spin levels and, correspondingly, the NMR frequencies (the exciton Knight shift). These shifts essentially depend on the type of statistics of the exciton gas. This fact may be used practically for the purpose of diagnostics of the exciton gas. Specifically, the exciton Knight shift exhibits a sharp increase at the phase transition of the exciton gas to the Bose–Einstein condensate state. The influence of excitons on NMR in semiconductors is considered in Sects. 5.15.3.

Section 5.4 shows that the nuclear spin relaxation rate is also influenced by orthobiexcitons. The biexciton contribution to the nuclear spin–lattice relaxation rate may be separated from the exciton contribution. The influence of the excitons on the nuclear spin relaxation, in turn, may be separated from the influence of the free carriers. Thus, the free carriers, excitons, and biexcitons may influence the relaxation of nuclear spins differently. This fact may be used in the investigation of these quasi-particles by NMR.

Section 5.5 discusses the experimental narrowing of exciton absorption lines broadened due to intraband exciton–exciton interaction at high levels of optical excitation. This method, consisting in the action of terasound pulses on exciton gas, is similar to the narrowing of NMR lines under the action of the four-pulse sequence known in high-resolution NMR spectroscopy as WAHUHA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    According to [423], the maximal concentration of excitons in the CuCl crystal at laser excitation may be ∼4⋅1020 cm−3.

References

  1. A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1994), 614 pp. Reprint edition

    Google Scholar 

  2. J.S. Waugh, New NMR Methods in Solid State Physics (Mir, Moscow, 1978), 179 pp. [Russian translation]

    Google Scholar 

  3. U. Heberlen, M. Mehring, High Resolution NMR in Solids (Mir, Moscow, 1980), 504 pp. [Russian translation]

    Google Scholar 

  4. R.S. Knox, Theory of Excitons (Mir, Moscow, 1966), 219 pp. [Russian translation]

    Google Scholar 

  5. L.V. Keldysh, Collective properties of excitons in semiconductors, in Excitons in Semiconductors, adv. ed. B.M. Vul (Nauka, Moscow, 1971), pp. 5–18

    Google Scholar 

  6. S.A. Moskalenko, D.W. Snoke, Bose–Einstein Condensation of Excitons and Biexcitons and Coherent Nonlinear Optics with Excitons (Cambridge University Press, Cambridge, 2000), 415 pp.

    Book  Google Scholar 

  7. S.A. Moskalenko, A.I. Bobrysheva, A.V. Lelyakov, M.F. Migleia, P.I. Hadji, M.I. Shmiglyuk, The Interaction of Excitons in Semiconductors (Stiinta, Chisinau, 1974), 211 pp.

    Google Scholar 

  8. A.I. Bobrysheva, Biexcitons in Semiconductors (Stiinta, Chisinau, 1979), 181 pp.

    Google Scholar 

  9. I.I. Geru, Low Frequency Resonance of Excitons and Impurity Centers (Stiinta, Chisinau, 1976), 194 pp.

    Google Scholar 

  10. S.A. Moskalenko, Bose–Einstein Condensation of Excitons and Biexcitons (RIO AN MSSR, Chisinau, 1970), 167 pp.

    Google Scholar 

  11. A.I. Bobrysheva, I.A. Carp, S.A. Moskalenko, Fiz. Tekh. Poluprovodn. 9(3), 605–607 (1975)

    Google Scholar 

  12. N. Nagasawa, N. Nakata, Y. Doi, M. Yeta, J. Phys. Soc. Jpn. 38(2), 593 (1975)

    Article  ADS  Google Scholar 

  13. M.G. Matsko, J. Exp. Theor. Phys. 21(5), 281–285 (1975)

    Google Scholar 

  14. I.I. Geru, A.H. Rotaru, Fiz. Tverd. Tela 18(9), 2766–2771 (1976)

    Google Scholar 

  15. J. Schwinger, On angular momentum, in Quantum Theory of the Angular Momentum, ed. by L.C. Biedenharn, H. Van Dam (Academic Press, New York, 1965), pp. 229–279

    Google Scholar 

  16. I.I. Geru, A.H. Rotaru, Fiz. Tverd. Tela 18, 2993–2996 (1976)

    Google Scholar 

  17. I.I. Geru, A.H. Rotaru, Spin–lattice relaxations of nuclei via Wannier–Mott excitons, in Crystalline and Vitreous Semiconductors, ed. by S.I. Radautsan et al. (Stiinta, Chisinau, 1977), pp. 46–53

    Google Scholar 

  18. A.H. Rotaru, I.I. Geru, Spin–lattice relaxation of nuclei via orthobiexcitons, in Crystalline and Vitreous Semiconductors, ed. by S.I. Radautsan et al. (Stiinta, Chisinau, 1977), pp. 53–61

    Google Scholar 

  19. I.I. Geru, A.H. Rotaru, Relaxation of nuclear spin and Knight shift due to the Wannier–Mott excitons, in Abstracts of the XVIIIth Congress AMPERE “Magnetic Resonance and Related Phenomena”, Nottingham, England, 9–14 September (1974), p. 152

    Google Scholar 

  20. V.A. Piragas, Fiz. Tverd. Tela 13(7), 2013–2017 (1971)

    Google Scholar 

  21. P.I. Hadji, Fiz. Tverd. Tela 15(6), 1718–1726 (1973)

    Google Scholar 

  22. A. Bivas, R. Levy, S. Nikitine, J.B. Grun, J. Phys. 31(2–3), 227–234 (1970)

    Google Scholar 

  23. A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series (Nauka, Moscow, 1981), 798 pp.

    MATH  Google Scholar 

  24. T. Ugumori, K. Masuda, S. Namba, J. Phys. Soc. Jpn. 41(6), 1991–1995 (1976)

    Article  ADS  Google Scholar 

  25. T. Ugumori, K. Masuda, S. Kamba, J. Phys. Soc. Jpn. 43(1), 151–156 (1977)

    Article  ADS  Google Scholar 

  26. M.S. Brodin, I.I. Geru, V.P. Karperko, M.G. Matsko, Ukr. Fiz. Zh. 26(5), 867–869 (1981)

    Google Scholar 

  27. A. Balzarotti, M. Grandolfo, F. Somma, P. Vecchia, Phys. Status Solidi (b) 44(2), 713–716 (1971)

    Article  ADS  Google Scholar 

  28. M.S. Brodin, V.M. Bandura, I.I. Geru, M.G. Matzko, Fiz. Tverd. Tela 24(10), 3133–3136 (1982)

    Google Scholar 

  29. I.I. Geru, J. Phys., Conf. Ser. 324(1), 012023 (2011). doi:10.1088/1742-6596/324/1/012023

    Article  ADS  Google Scholar 

  30. L.L. Buishvili, M.G. Menadbe, J. Exp. Theor. Phys. 77(6), 2435–2442 (1979)

    Google Scholar 

  31. B.P. Provotorov, E.B. Fel’dman, J. Exp. Theor. Phys. 79(6), 2206–2217 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Geru, I., Suter, D. (2013). Investigation of Excitons by NMR Spectroscopy Methods. In: Resonance Effects of Excitons and Electrons. Lecture Notes in Physics, vol 869. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35807-4_5

Download citation

Publish with us

Policies and ethics