Skip to main content

Exciton Acoustic Resonance

  • Chapter
  • 1520 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 869))

Abstract

Ultrasonic and hypersonic waves interact with semiconductor lattice vibrations, as well as with various impurity centers, defects, free carriers, and excitons existing in crystals. It was shown that the acoustic effects on excitons at sufficiently low concentrations are one to three orders of magnitude higher than the lattice absorption of hypersound.

The contribution of free carriers to the acoustic absorption can be separated from the hypersonic absorption by excitons, which, in turn, is different for the processes of intra- and interband scattering of excitons by phonons. This difference is due to a noncoincidence between the resonance frequencies of acoustic absorption lines at intra- and interband transitions of excitons, as well as to the different dependencies of the absorption coefficient of hypersound versus phonon wave vectors at intra- and interband transitions.

Attenuation of polarized hypersound on excitons in anisotropic crystals is strongly anisotropic. It grows with the increasing difference of the effective masses of carriers bound into excitons, which becomes significant at high frequencies (hypersonic range). This causes high values of the absorption coefficient of polarized hypersound (∼102–103 dB/cm) at low exciton concentrations ∼1014 cm−3 in direct-gap A 2 B 6 piezo-semiconductors. The noncoincidence between intra- and interband acoustic absorption lines is used in the development of a two-band theory of the phonon maser with excitons. It is shown that the instability of the system of excitons and strictly resonant hypersonic phonons leads to the existence of exciton–elastic waves. This theory is similar to the theory of generation of coherent magnons in magnetic semiconductors with a redefinition of the physical sense of its constituent quantities. An important consequence of the theory of the phonon maser with excitons is the low threshold of self-excitation of this generator, which is attained at intermediate concentrations of excitons in the crystals.

If attractive forces are displayed between high-density excitons, and biexcitons are formed, then the absorption of hypersound by biexcitons is more efficient than that by excitons in the same range of frequencies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    It is possible to evidentiate the acoustic absorption on the excitons on the background of the acoustic absorption on the free charge carriers in this case only, if the concentration of the excitons is much higher than the concentration of the free carriers of the current.

  2. 2.

    The interaction of excitons with hypersonic phonons through the deformation potential will be considered in the next section.

  3. 3.

    Here the integration domain of K x and K y is expanded, as usual, outside the reduced Brillouin zone to ±∞.

References

  1. C. Poole, The Technique of EPR Spectroscopy (Mir, Moscow, 1970), 557 pp. [Russian translation]

    Google Scholar 

  2. J. Taner, B. Rampton, Hypersound in Solid State Physics (Mir, Moscow, 1975), 453 pp. [Russian translation]

    Google Scholar 

  3. A.F. Dite, V.I. Revenko, V.B. Timofeev, Fiz. Tverd. Tela 16(7), 1953–1957 (1974)

    Google Scholar 

  4. I.I. Geru, Low Frequency Resonance of Excitons and Impurity Centers (Stiinta, Chisinau, 1976), 194 pp.

    Google Scholar 

  5. H. Haken, H. Sauermann, Z. Phys. 176(1), 47–62 (1963)

    Article  ADS  Google Scholar 

  6. H. Haken, H. Sauermann, Z. Phys. 176(3), 261–275 (1963)

    Article  ADS  Google Scholar 

  7. V.L. Gurevich, Fiz. Tverd. Tela 4(4), 909–917 (1962)

    MathSciNet  Google Scholar 

  8. L.E. Gurevich, B.I. Shklovsky, J. Exp. Theor. Phys. 53(5(11)), 1726–1734 (1967)

    Google Scholar 

  9. W.P. Mason, T.B. Bateman, Phys. Rev. A 134(5), 1387–1396 (1964)

    ADS  Google Scholar 

  10. M. Pomerantz, Phys. Rev. B 1(10), 4029–4036 (1970)

    Article  ADS  Google Scholar 

  11. A.K. Srivastava, G.S. Verma, Phys. Rev. B 1(2), 776–778 (1970)

    Article  ADS  Google Scholar 

  12. G.L. Merkulov, L.A. Yakovlev, Acoust. J. 6(2), 244–251 (1960)

    Google Scholar 

  13. I.I. Geru, P.I. Bardetsky, Fiz. Tekh. Poluprovod. 9, 1995–1999 (1975)

    Google Scholar 

  14. I.I. Geru, Instability in the system of excitons and hypersound phonons, in Semiconductors at High Levels of Excitation, ed. by V.A. Moskalenko (Stiinta, Chisinau, 1978), pp. 136–145

    Google Scholar 

  15. I.I. Geru, P.I. Bardetsky, Izv. Akad. Nauk SSSR 37(10), 2159–2165 (1973)

    Google Scholar 

  16. I.I. Geru, P.I. Bardetsky, Elastic scattering of hypersound by excitonic molecules in semiconductors A 2 B 6, in Abstracts of the International Meeting of Photoelectric and Optical Phenomena in Solid State, Varna, 24–25 May (1974), p. 27

    Google Scholar 

  17. C. Herring, Phys. Rev. 95, 954 (1954)

    Article  ADS  MATH  Google Scholar 

  18. R. Nava, R. Azrt, I. Ciccarello, K. Dransfeld, Phys. Rev. A 134(3), 581–589 (1964)

    ADS  Google Scholar 

  19. L.E. Gurevich, B.I. Shklovsky, Fiz. Tverd. Tela 9(2), 526–534 (1967)

    Google Scholar 

  20. S. Simons, Proc. Phys. Soc. 82(3), 401–405 (1963)

    Article  ADS  Google Scholar 

  21. J. Klerk, Phys. Rev. A 139(5), 1635–1639 (1965)

    Google Scholar 

  22. E.M. Ganapol’sky, A.N. Chernets, J. Exp. Theor. Phys. 51(2(8)), 383–393 (1966)

    Google Scholar 

  23. D.H.R. Price, J. Phys. Ser. G (Solid State Phys.) 4(9), 966–970 (1971)

    Article  ADS  Google Scholar 

  24. G. Weinreich, Phys. Rev. 104(2), 321–327 (1956)

    Article  ADS  Google Scholar 

  25. G. Weinreich, T.M. Sanders, H.G. White, Phys. Rev. 114(1), 33–44 (1959)

    Article  ADS  Google Scholar 

  26. E.I. Blount, Phys. Rev. 114(2), 418–436 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. A.R. Hutson, D.L. White, J. Appl. Phys. 33(1), 40–47 (1962)

    Article  ADS  Google Scholar 

  28. D.L. White, J. Appl. Phys. 33(8), 2547–2554 (1962)

    Article  ADS  MATH  Google Scholar 

  29. V.L. Gurevich, V.D. Kagan, Fiz. Tverd. Tela 4(9), 2441–2446 (1962)

    Google Scholar 

  30. I. Uchida, T. Ishiguro, Y. Sasaki, T. Suzuki, J. Phys. Soc. Jpn. 19(5), 674–680 (1964)

    Article  ADS  Google Scholar 

  31. P.D. Southgate, H.N. Spector, J. Appl. Phys. 36(12), 3728–3734 (1965)

    Article  ADS  Google Scholar 

  32. A.E. Glauberman, M.A. Ruvinsky, Fiz. Tverd. Tela 8(11), 3335–3338 (1966)

    Google Scholar 

  33. A.I. Ansel’m, Yu.A. Firsov, J. Exp. Theor. Phys. 30(4), 719–723 (1956)

    Google Scholar 

  34. V.L. Gurevich, Fiz. Tekh. Poluprovodn. 2(11), 1557–1592 (1968)

    Google Scholar 

  35. J.A. Deverin, Helv. Phys. Acta 42(3), 397–419 (1969)

    Google Scholar 

  36. A.A. Lipnick, Fiz. Tekh. Poluprovodn. 6(5), 878–885 (1972)

    Google Scholar 

  37. V.D. Kagan, Fiz. Tverd. Tela 16(7), 2022–2026 (1974)

    Google Scholar 

  38. J.H. McFee, Propagation and amplification of acoustic waves in piezoelectric semiconductors, in Physical Acoustics, Vol. IV, Part A. Applications of Physical Acoustics in Quantum Physics and Solid State Physics, ed. by W.P. Mason (Moscow, Mir, 1969), 436 pp. [Russian translation]

    Google Scholar 

  39. J.E. Rowe, M. Cardona, F.H. Pollak, Solid State Commun. 6(4), 239–242 (1968)

    Article  ADS  Google Scholar 

  40. A.M. Fedorchenko, N.Ya. Kotsarenko, The Absolute and Convective Instability in the Plasma and Solids (Nauka, Moscow, 1981), 176 pp.

    Google Scholar 

  41. P.A. Stworock, Phys. Rev. 112(5), 1488–1503 (1958)

    Article  MathSciNet  ADS  Google Scholar 

  42. K.F. Renk, J. Deisenhofer, Phys. Rev. Lett. 26(13), 764–766 (1971)

    Article  ADS  Google Scholar 

  43. R.S. Grandall, Solid State Commun. 7(16), 1109–1111 (1969)

    Article  ADS  Google Scholar 

  44. E.H. Jacobsen, J. Phys. Suppl. 33(11–12), 25–31 (1973)

    Google Scholar 

  45. U.H. Kopvillem, V.R. Nagibarov, Fiz. Tverd. Tela 10(3), 750–753 (1968)

    Google Scholar 

  46. A.A. Lipnik, M.A. Ruvinsky, Phys. Status Solidi (b) 28(1), 75–81 (1968)

    Article  ADS  Google Scholar 

  47. S.L. Korolyuk, Fiz. Tverd. Tela 5(1), 352–353 (1963)

    Google Scholar 

  48. P.D. Altukhov, V.I. Revenko, V.B. Timofeev, Fiz. Tverd. Tela 15(4), 974–979 (1973)

    Google Scholar 

  49. E. Gross, S. Permogorov, V. Travnikov, A. Selkin, J. Phys. Chem. Solids 31(12), 2595–2606 (1970)

    Article  ADS  Google Scholar 

  50. A.C. Alekseev, T.I. Galkina, V.N. Maslennikov, R.G. Khakimov, E.P. Schebnev, JETP Lett. 21(10), 578–582 (1975)

    Google Scholar 

  51. L.V. Keldysh, S.G. Tikhodeev, JETP Lett. 21(10), 582–585 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Geru, I., Suter, D. (2013). Exciton Acoustic Resonance. In: Resonance Effects of Excitons and Electrons. Lecture Notes in Physics, vol 869. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35807-4_3

Download citation

Publish with us

Policies and ethics