Skip to main content

Capacitance Storage Using a Ferroelectric Medium and a Scanning Capacitance Microscope (SCM)

  • Chapter
Applied Scanning Probe Methods

Part of the book series: NanoScience and Technology ((NANO))

  • 214 Accesses

Abstract

Recently, a lot of research has been carried out concerning future data storage technologies, which are mainly centered on magnetic recording, optical recording, and scanning probe microscope (SPM) data storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ando E (1985) Proc Int Symp Electron Devices, pp 47

    Google Scholar 

  2. Fukumoto A, Kubota S (1992) Jpn J Phys Lett 31:529

    Article  Google Scholar 

  3. Binnig G, Rohrer H, Gerber CH, Weibel E (1982) Phys Rev Lett 49:57

    Article  Google Scholar 

  4. Eigler DM, Schweizer EK (1990) Nature 344:524

    Article  Google Scholar 

  5. Mamin HJ, Ruger D (1992) Appl Phys Lett 61:1003

    Article  Google Scholar 

  6. Moreland J, Rice P (1990) Appl Phys Lett 57:310

    Article  Google Scholar 

  7. Betzig E, Trautman JK (1992) Science 257:189

    Article  Google Scholar 

  8. Matey JR, Blanc J (1985) J Appl Phys 57:1437

    Article  Google Scholar 

  9. Bugg CD, King PJ (1988) J Phys E 21:147

    Article  Google Scholar 

  10. Williams CC, Hough WP, Rishton SA (1989) Appl Phys Lett 55:203

    Article  Google Scholar 

  11. Williams CC, Slinkman J, Hough WP, Wickramsinghe HK (1990) J Vac Sci Technol A 8:895

    Article  Google Scholar 

  12. Dreyer M, Wiesendanger R (1995) Appl Phys A 61:357

    Google Scholar 

  13. Tomiye H, Kawamia H, Izawa M, Yoshimura M, Yao T (1995) Jpn J Appl Phys 34:3376

    Article  Google Scholar 

  14. Nakagiri N, Yamamoto T, Sugimura H, Suzuki Y (1996) J Vac Sci Technol B 14:887

    Article  Google Scholar 

  15. Goto K, Hane K (1997) Rev Sci Instrum 68:120

    Article  Google Scholar 

  16. Tran T, Oliver DR, Thomson DJ, Bridges GE (2001) Rev Sci Instrum 72:2618

    Article  Google Scholar 

  17. De Wolf P, Brazel E, Erickson A (2001) Mat Sci Sem Proc 4:71

    Article  Google Scholar 

  18. Ciampolini L, Ciappa M, Malberti P, Fitchtner W (2002) Solid-State Elec 46:445

    Article  Google Scholar 

  19. Palmer RC, Denlinger EJ, Kawamoto H (1982) RCA Rev 43:194

    Google Scholar 

  20. Sanada K, Yamamoto R, Umemura S (1994) Jpn J Appl Phys 33:6383

    Article  Google Scholar 

  21. Tsuji S (1981) J Inst Television Eng Jpn 35:1061

    Article  Google Scholar 

  22. Chang JJ (1976) Proc IEEE 64:1039

    Article  Google Scholar 

  23. Iwamura S, Nishida Y, Hashimoto K (1981) IEEE Trans Electron Devices ED-28:854

    Google Scholar 

  24. Barrett RC, Quate CF (1991) J Appl Phys 70:2725

    Article  Google Scholar 

  25. Born A, Wiesendanger R (1999) Appl Phys A 68:131

    Article  Google Scholar 

  26. Tomiye H, Yao T, Kawami H (1997) Appl Surf Sci 117/118:166

    Article  Google Scholar 

  27. Fujiwara I, Kojima S, Seto J (1996) Jpn J Appl Phys 35:2764

    Article  Google Scholar 

  28. Schaadt DM, Yu ET, Sanker S, Berkowitz AE (1999) Appl Phys Lett 74:472

    Article  Google Scholar 

  29. Yamamoto R, Sanada K, Umemura S (1994) Jpn J Appl Phys 33:5829

    Article  Google Scholar 

  30. Yamauchi N, Kato K, Wada T (1984) Jpn J Appl Phys 23:L671

    Article  Google Scholar 

  31. Furukawa T (1989) Phase Transitions 18:143

    Article  Google Scholar 

  32. Furukawa T, Matsuzaki H, Shiina M, Tajitsu Y (1985) Jpn J Appl Phys 24:L661

    Article  Google Scholar 

  33. Wurfel P, Batra IP (1973) Phys Rev B 8:5126

    Article  Google Scholar 

  34. Hatano J, Suda F, Futama H (1973) Jpn J Appl Phys 12:1644

    Article  Google Scholar 

  35. Greidanus FJAM, Jacobs BAJ, Spruit JHM (1989) IEEE Trans Magn MAG-25:3524

    Google Scholar 

  36. Sze SM (1981) Physics of semiconductor devices, 2nd edn. Wiley, New York

    Google Scholar 

  37. Grove AS (1967) Physics and technology of semiconductor devices. Wiley, New York

    Google Scholar 

  38. Yamamoto R, Sanada K, Umemura S (1996) Jpn J Appl Phys 35:5284

    Article  Google Scholar 

  39. Iwasaki S, Nakamura Y, Muraoka H (1981) IEEE Trans Magn MAG-17:2535

    Google Scholar 

  40. Cho Y, Matsuura K, Kazuta S, Kitamura K (2001) Tech Report of IEICE. MR2001-8, p 49

    Google Scholar 

  41. Hiranaga Y, Fujimoto K, Wagatsuma Y, Cho Y, Onoe A, Terabe K, Kitamura K (2002) Tech Report of IEICE. MR2002-6, p 13

    Google Scholar 

  42. Larsen PK, Kampschoer GLM, Ulenaers MJE, Spierings GACM, Cuppens R (1991) Appl Phys Lett 59:611

    Article  Google Scholar 

  43. Despont M, Brugger J, Drechsler U, Durig U, Haberle W, Lutwyche M, Rothuizen H, Widmer R, Binnig GK, Vettiger P (1999) Proc IEEE MEMS’ 99, pp 564

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yamamoto, R. (2004). Capacitance Storage Using a Ferroelectric Medium and a Scanning Capacitance Microscope (SCM). In: Applied Scanning Probe Methods. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35792-3_15

Download citation

Publish with us

Policies and ethics