Skip to main content

Fernziele der Nanoelektronik

  • Chapter
Book cover Nanoelektronik

Part of the book series: acatech DISKUSSION ((ACATECHDISKUSSION))

Zusammenfassung

Während der vergangenen vierzig Jahre folgte die Entwicklung der Mikroelektronik dem Moore#x2019;schen Gesetz, einem empirischen Gesetz, welches vorhersagt, dass sich die Bauelementedichte und die Leistungsfähigkeit monolithisch integrierter Siliziumschaltkreise in zeitlichen Abständen von 18 Monaten jeweils verdoppeln.1 Während dieser vierzig Jahre verringerten sich die Strukturgrößen von Transistoren von 10 Mikrometer auf etwa 30 Nanometer. In den letzten 25 Jahren entwickelte sich die siliziumbasierte komplementäre Metalloxid-Halbleitertechnologie (CMOS) zur Mainstreamtechnologie für digitale, analoge und Mixed-Signal-Anwendungen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Aassime, A./ Johansson, G./ Wendin, G./ Schoelkopf, R./ Delsing, P.: “Radio-Frequency Single-Electron Transistor as Readout Device for Qubits: Charge Sensitivity and Back-action”. In: Physical Review Letters, 86: 15, 2001, S. 3376–3379.

    Google Scholar 

  • Abdellah, A./ Fabel, B./ Lugli, P./ Scarpa, G.: “Spray Deposition of Organic Semiconducting Thin-Films: Towards the Fabrication of Arbitrary Shaped Organic Electronic Devices”. In: Organic Electronics, 11, Issue 6, Juni 2010, S. 1031–1038.

    Google Scholar 

  • Abrams, D. S./ Lloyd, S.: “Simulation of Many-Body Fermi Systems on a Universal Quantum Computer”. In: Physical Review Letters, 79: 13, 1997, S. 2586–2589.

    Google Scholar 

  • Ahmed, I./ Er Ping Li/ Lee, H.: “Electromagnetic Waveguiding in Metallic Plasmonic Structures Using FDTD”. In: IEEE: Nanotechnology, 2007 (IEEE-NANO 2007. 7th IEEE Conference on, 2007), S. 494–497.

    Google Scholar 

  • Ahmed, I./ Er Ping Li/ Vahldieck, R.: “Electromagnetic Wave Propagation in a Ag Nano-particle-Based Plasmonic Power Divider”. In: Optics Express, 17: 1, 2009, S. 337–345.

    Google Scholar 

  • Akarvardar, K./ Elata, D./ Parsa, R./ Wan, G. C./ Yoo, K./ Provine, J./ Peumans, P./ Howe, R. T./ Wong, H. S.: “Design Considerations for Complementary Nanoelectromechanical Logic Gates”. In: IEEE International: Electron Devices Meeting, 2007 (IEDM 2007), 2007, S. 299–302.

    Google Scholar 

  • Akinaga, H./ Shima, H.: “Resistive Random Access Memory (ReRAM) Based on Metal Oxides”. In: Proceedings of the IEEE, 98: 12, 2010, S. 2237–2251.

    Google Scholar 

  • Alam, M. T./ Siddiq, M. J./ Bernstein, G. H./ Niemier, M./ Porod, W./ Hu, X. S.: “On-Chip Clocking for Nanomagnet Logic Devices”. In: IEEE Transactions on Nanotechnology, 9: 3, 2010, S. 348–351.

    Google Scholar 

  • Annett, J. F.: Superconductivity, Superfluids, and Condensates, Oxford: Oxford University Press, USA, 2004.

    Google Scholar 

  • Appenzeller, J./ Lin, Y./ Knoch, J./ Avouris, P: “Band-to-band Tunneling in Carbon Nano-tube Field-Effect Transistors”. In: Physical Review Letters, 93: 19, 2004, S. 196805.

    Google Scholar 

  • Appenzeller, J./ Knoch, J./ Bjork, M. T./ Riel, H./ Schmid, H./ Riess, W.: “Toward Nano-wire Electronics”. In: Electron Devices, IEEE Transactions on, 55: 11, November 2008, S. 2827–2845.

    Google Scholar 

  • Ashley, T./ Emeny, M. T./ Hayes, D. G./ Hilton, K. P./ Jefferies, R./ Maclean, J. O./ Smith, S. J./ Tang, A. W./ Wallis, D. J./ Webber, P. J.: “High-Performance InSb Based Quantum Well Field Effect Transistors for Low-Power Dissipation Applications”. In: IEEE International Electron Devices Meeting (IEDM), 2009, Baltimore, U.S.A., S. 1–4. (Tagungsband)

    Google Scholar 

  • Awschalom, D. D./ Flatté, M. E.: “Challenges for Semiconductor Spintronics”. In: Nature Physics, 3: 3, 2007, S. 153–159.

    Google Scholar 

  • Bachtold, A./ Hadley, P./ Nakanishi, T./ Dekker, C.: “Logic Circuits with Carbon Nanotube Transistors”. In: Science, 294, 2001, S. 1317–1320.

    Google Scholar 

  • Bae, S./ Kim, H./ Lee, Y./ Xu, X./ Park, J./ Zheng, Y./ Balakrishnan, J./ Lei, T./ Kim, H. R./ Song, Y. I./ Kim, Y./ Kim, K. S./ Ozyilmaz, B./ Ahn, J./ Hong, B. H./ Iijima, S.: “Roll-to-Roll Production of 30-inch Graphene Films for Transparent Electrodes”. In: Nature Nanotechnology, 5: 8, 2010, S. 574–578.

    Google Scholar 

  • Baierl, D./ Fabel, B./ Lugli, P./ Scarpa, G.: “Efficient Indium-Tin-Oxide (ITO) Free Top-Absorbing Organic Photodetector with Highly Transparent Polymer Top Electrode”. In: Organic Electronics, 12, Issue 10, Oktober 2011, S. 1669–1673.

    Google Scholar 

  • Bardeen, J./ Cooper, L. N./ Schrieffer, J. R.: “Microscopic Theory of Superconductivity”. In: Physical Review, 106: 1, 1957, S. 162–164.

    MathSciNet  Google Scholar 

  • Bardeen, J./ Cooper, L. N./ Schrieffer, J. R.: “Theory of Superconductivity”. In: Physical Review, 108: 5, 1957, S. 1175–1204.

    MATH  MathSciNet  Google Scholar 

  • Bareiß, M./ Imtaar, M. A./ Fabel, B./ Scarpa, G./ Lugli, P.: “Temperature Enhanced Large Area Nano Transfer Printing on Si/SiO2 Substrates Using Si Wafer Stamps”. In: Journal of Adhesion, 87, Issue 9, 2011, S. 893–901.

    Google Scholar 

  • Barnes, W./ Dereux, A./ Ebbesen, T.: “Surface Plasmon Subweavlength Optics”. In: Nature, 424, 2003, S. 824–830.

    Google Scholar 

  • Baughman, R./ Zakhidov, A./ de Heer, W.: “Carbon Nanotubes — the Route Toward Applications”. In: Science, 297, 2002, S. 787–792.

    Google Scholar 

  • Baumgardner, J./ Petsetski, A./ Murduck, J./ Przybysz, J./ Adam, J./ Zhang, H.: “Inherent Linearity in Carbon Nanotube Field-Effect Transistors”. In: Applied Physics Letters, 91, 2007, S. 1–3.

    Google Scholar 

  • Becherer, M./ Csaba, G./ Emling, R./ Ji, L./ Porod, W./ Lugli, P. et al.: “Ordering Phenomena in Focused Ion Beam Structured Co/Pt Multilayers”. In: Proceedings of the 71st Annual Meeting of the German Physical Society, Verhandl, DPG (VI), 2007, S. 42.

    Google Scholar 

  • Becherer, M./ Csaba, G./ Porod, W./ Emling, R./ Lugli, P./ Schmitt-Landsiedel, D.: “Magnetic Ordering of Focused-Ion-Beam Structured Cobalt-Platinum Dots for Field-Coupled”. In: IEEE Transactions on Nanotechnology, 7: 3, Mai 2008, S. 316–320.

    Google Scholar 

  • Becker, H. J.: “Low voltage electrolytic capacitor”. In: US Patent 2,800,616, 1957.

    Google Scholar 

  • Behin-Aein, B./ Datta, D./ Salahuddin, S./ Datta, S.: “Proposal for an All-Spin Logic Device with Built-in Memory”. In: Nature Nanotechnology, 5: 4, 2010, S. 266–270.

    Google Scholar 

  • Bernstein, G. H./ Imrea, A./ Metlushko, V./ Orlov, A./ Zhou, L./ Ji, L./ Csaba, G./Porod, W.: “Magnetic QCA Systems”. In: Microelectronics Journal, 36, 2005, S. 619–624.

    Google Scholar 

  • Bhuwalka, K. K./ Schulze, J./ Eisele, I.: “Performance Enhancement of Vertical Tunnel Field-Effect Transistor with SiGe in the p+ Layer”. In: Japanese Journal of Applied Physics,43, 2004, S. 4073–4078.

    Google Scholar 

  • Bocko, M. F./ Herr, A. M./ Feldman, M. J.: “Prospects for Quantum Coherent Computation Using Superconducting Electronics”. In: IEEE Transactions on Applied Superconductivity, 7: 2, 1997, S. 3638–3641.

    Google Scholar 

  • Boucart, K./ Riess, W./ Ionescu, A. M.: “Lateral Strain Profile as Key Technology Booster for All-Silicon Tunnel FETs”. In: IEEE Electron Device Letters, 30: 6, 2009, S. 656–658.

    Google Scholar 

  • Burke, P.: “An RF Circuit Model for Carbon Nanotubes”. In: Nanotechnology, 2002 (IEEE-NANO 2002. Proceedings of the 2002 2nd IEEE Conference on Nanotechnology), Washington D.C., U.S.A., S. 393–396.

    Google Scholar 

  • Burke, P.: “An RF Circuit Model for Carbon Nanotubes”. In: IEEE Transactions on Nanotechnology, 2: 1, 2003, S. 55–58.

    Google Scholar 

  • Cao, Q./ Kim, H./ Pimparkar, N./ Kulkarni, J. P./ Wang, C./ Shim, M./ Roy, K./ Alam, M. A./ Rogers, J. A.: “Medium-Scale Carbon Nanotube Thin-Film Integrated Circuits on Flexible Plastic Substrates”. In: Nature, 454, 2008, S. 495–500.

    Google Scholar 

  • Cao, Q./ Rogers, J. A.: “Random Networks and Aligned Arrays of Single-Walled Carbon Nanotubes for Electronic Device Applications”. In: Nano Research, 1: 4, 2008, S. 259–272.

    Google Scholar 

  • Capasso, F./ Munday, J./ Iannuzzi, D./ Chan, H.: “Casimir Forces and Quantum Electro-dynamical Torques: Physics and Nanomechanics”. In: IEEE Journal of Selected Topics in Quantum Electronics, 13: 2, 2007, S. 400–414.

    Google Scholar 

  • Chou, S. Y.: “Imprint of Sub-25 nm Vias and Trenches in Polymers”. In: Applied Physics Letters, 67, 1995, S. 3114–3116.

    Google Scholar 

  • Chua, L.: “Memristor — The Missing Circuit Element”. In: IEEE Transactions on Circuit Theory, 18: 5, 1971, S. 507–519.

    Google Scholar 

  • Coey, J./ Sanvito, S.: “Magnetic Semiconductors and Half-Metals”. In: J. of Physics D: Applied Physics, 37, 2004, S. 988–993.

    Google Scholar 

  • Colombo, C./ Spirkoska, D./ Frimmer, M./ Abstreiter, G./ Fontcubertai Morral, A.: “Ga-Assisted Aatalyst-Free Growth Mechanism of GaAs Nanowires by Molecular Beam Epitaxy”. In: Physical Review B, 77, 2008.

    Google Scholar 

  • Conway, B./ Birss, V./ Wojtowicz, J.: “The Role and Utilization of Pseudocapacitance for Energy Storage by Supercapacitors”. In: Journal of Power Sources, 66: 1–2, 1997, S. 1–14.

    Google Scholar 

  • Cowburn, R./ Welland, M.: “Room Temperature Magnetic Quantum Cellular Automata”. In: Science, 287, 2000, S. 1466–1468.

    Google Scholar 

  • Csaba, G./ Lugli, P./ Csurgay, A./ Porod, W.: “Simulation of Power Gain and Dissipation in Field-Coupled Nanomagnets”. In: Journal of Computational Electronics, 4, 2005, S. 105–110.

    Google Scholar 

  • Csaba, G./ Kiermaier, J./ Becherer, M./ Breitkreutz, S./ Ju, X./ Lugli, P./ Schmitt-Landsiedel, D./ Porod, W.: “Clocking Magnetic Field-Coupled Devices by Domain Walls”. In: Journal of Applied Physics, 111: 7, April 2012, S. 07E337–07E337–3.

    Google Scholar 

  • Csaba, G./ Lugli, P.: “Read-Out Design Rules for Molecular Crossbar Architectures”. In: IEEE Transactions on Nanotechnology, 8: 3, 2009, S. 369–374.

    Google Scholar 

  • Cui, Y./ Lieber, C. M.: “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks”. In: Science, 291, 2. Februar 2001, S.851–853.

    Google Scholar 

  • Dash, S./ Sharma, S./ Patel, R./ De Jong, M./ Jansen, R.: “Electrical Creation of Spin Polarization in Silicon at Room Temperature”. In: Nature, 462, 2009, S. 491–494.

    Google Scholar 

  • Dean, C. R./ Young, A. F./ Meric, I./ Lee, C./ Wang, L./ Sorgenfrei, S./ Watanabe, K./ Taniguchi, T./ Kim, P./ Shepard, K. L./ Hone, J.: “Boron Nitride Substrates for High-Quality Graphene Electronics”. In: Nature Nanotechnology, 5: 10, 2010, S. 722–726.

    Google Scholar 

  • Dekker, C.: “Carbon Nanotubes as Molecular Quantum Wires”. In: Physics Today, 52, 1999, S. 22–28.

    Google Scholar 

  • Ding, L./ Tselev, A./ Wang, J./ Yuan, D./ Chu, H./ McNicholas, T. P./ Li, Y./ Liu, J.: “Selective Growth of Well-Aligned Semiconducting Single-Walled Carbon Nanotubes”. In: Nano Letters, 9: 2, 2009, S. 800–805.

    Google Scholar 

  • Ditlbacher, H./ Hohenau, A./ Wagner, D./ Kreibig, U./ Rogers, M./ Hofer, F./ Aussenegg, F. R./ Krenn, J. R.: “Silver Nanowires as Surface Plasmon Resonators”. In: Physical Review Letters, 95, 2005, S. 1–4.

    Google Scholar 

  • Dragoman, M./ Konstantinidis, G./ Kostopoulos, A./ Dragoman, D./ Neculoiu, D./ Buiculescu, R./ Plana, R./ Coccetti, F./ Hartnagel, H.: “Multiple Negative Resistances in Trenched Structures Bridged with Carbon Nanotubes”. In: Applied Physics Letters, 93: 4, 2008, S. 043117–043117–3.

    Google Scholar 

  • Du, X./ Skachko, I./ Barker, A./ Andrei, E.: “Approaching Ballistic Transport in Suspended Graphene”. In: Nature Nanotechnology, 3: 8, 2008, S. 491–495.

    Google Scholar 

  • Duty, T./ Gunnarsson, D./ Bladh, K./ Delsing, P.: “Coherent Dynamics of a Josephson Charge Qubit”. In: Physical Review B, 69, 2004, S. 1–4.

    Google Scholar 

  • Ebbesen, T./ Ajayan, P.: “Large-Scale Synthesis of Carbon Nanotubes”. In: Nature, 358, 1992, S. 220–222.

    Google Scholar 

  • Erlen, C./ Lugli, P.: IEEE Trans. on Electron Devices, ED56, 2009, S. 546–455.

    Google Scholar 

  • Feynman, R. P.: “There’s Plenty of Room at the Bottom” (Vortrag, American Physical Society in Pasadena, 29. Dezember 1959), Pasadena, 1959. In: Engineering and Science (Caltech), Februar 1960, S. 20 ff.

    Google Scholar 

  • Feynman, R. P.: “Simulating Physics with Computers”. In: International Journal of Theoretical Physics, 21: 6/7, 1982, S. 467–488.

    MathSciNet  Google Scholar 

  • Fichtner, N./ Russer, P.: “On the Possibility of Nanowire Antennas” (36th European Microwave Conference, 2006), Manchester, U.K., S. 870–873 (Tagungsband).

    Google Scholar 

  • Flocke, A./ Noll T. G.: “Fundamental Analysis of Resistive Nano-Crossbars for the Use in Hybrid Nano/CMOS-Memory” (33rd European Solid State Circuits Conference, September 2007), Proc. ESSCIRC, Munich, Germany, 2007, S. 328–331 (Tagungsband).

    Google Scholar 

  • Fontcubertai Morral, A./ Colombo, C./ Abstreiter, G./ Arbiol, J./ Morante, J. R.: “Nucleation Mechanism of Gallium-Assisted Molecular Beam Epitaxy Growth of Gallium Arsenide Nanowires”. In: Applied Physics Letters, 92, 063112, 2008.

    Google Scholar 

  • Frackowiak, E./ Metenier, K./ Bertagna, V./ Beguin, F.: “Supercapacitor Electrodes from Multiwalled Carbon Nanotubes”. In: Applied Physics Letters, 77: 15, 2000, S. 2421–2423.

    Google Scholar 

  • Franklin, A. D./ Chen, Z.: “Length Scaling of Carbon Nanotube Transistors”. In: Nature Nanotechnology, 5: 12, 2010, S. 858–862.

    Google Scholar 

  • Frischeisen, J. et al.: “Light Extraction from Surface Plasmons and Waveguide Modes in an Organic Light-Emitting Layer by Nanoimprinted Gratings”. In: Optics Express, 19, Issue S1, 2011, S. A7–A19.

    Google Scholar 

  • Fujita, S./ Nomura, K./ Abe, K./ Lee, T. H.: “3-D Nanoarchitectures with Carbon Nanotube Mechanical Switches for Future On-Chip Network Beyond CMOS Architecture”. In: IEEE Transactions on Circuits and Systems I: Regular Papers, 54: 11, 2007, S. 2472–2479.

    Google Scholar 

  • Geim, A. K.: “Graphene: Status and Prospects”. In: Science, 324, 2009, S. 1530–1534.

    Google Scholar 

  • Geim, A. K./ Novoselov, K. S.: “The Rise of Graphene”. In: Arxiv preprint cond-mat/0702595, 2007.

    Google Scholar 

  • Green, J. E./ Choi, J. W./ Boukai, A./ Bunimovich, Y./ Johnston-Halperin, E./ DeIonno, E./ Luo, Y./ Sheriff, B. A./ Xu, K./ Shin, Y. S./ Tseng, H./ Stoddart, J. F./ Heath, J. R.: “A 160-kilo-bit Molecular Electronic Memory Patterned at 1011 Bits Per Square Centimetre”. In: Nature, 445, 2007, S. 414–417.

    Google Scholar 

  • Gruska, J.: Quantum Computing, New York: McGraw-Hill, 1999.

    Google Scholar 

  • Guo, T./ Nikolaev, P./ Rinzler, A./ Tomanek, D./ Colbert, D./ Smalley, R.: “Self-Assembly of Tubular Fullerenes”. In: Journal of Physical Chemistry, 99, 1995, S. 10694–10697.

    Google Scholar 

  • Guo, T./ Nikolaev, P./ Thess, A./ Colbert, D./ Smalley, R.: “Catalytic Growth of Single-Walled Nanotubes by Laser Vaporization”. In: Chemical Physics Letters, 243, 1995, S. 49–54.

    Google Scholar 

  • Hall, K. C./ Flatté M. E.: “Performance of a Spin-Based Insulated Gate Field Effect Transistor”. In: Applied Physics Letters, 88, 2006, S. 162503–1–162503–3.

    Google Scholar 

  • Han, J.-H./ Lee, T./ Kim, D./ Yoo, J.-B./ Park, C.-Y./ Choi, J./ Jung, T./ Hand, I./ Kim, J.: “FieldEmission Properties of Carbon Nanotubes Grown on Co/TiN Coated Ta Substrate for Cathode in Microwave Power Amplifier”. In: Diamond and Related Materials, 13, 2004, S. 987–993.

    Google Scholar 

  • Harrer, S./ Strobel, S./ Scarpa, G./ Abstreiter, G./ Tornow, M./ Lugli, P.: “Room Temperature Nanoimprint Lithography Using Molds Fabricated by Molecular Beam Epitaxy”. In: IEEE Transactions on Nanotechnology, 7: 3, 2008, S. 363–379.

    Google Scholar 

  • Harrer, S./ Ahmed, S./ Afzali-Ardakani, A./ Luan, B./ Waggoner, P. S./ Shao, S./ Peng, H./ Goldfarb, D. L./ Martyna, G. J./ Rossnagel, S. M./ Deligianni, L./ Stolovitzky, G. A.: “Electrochemical Characterization of Thin Film Electrodes Toward Developing a DNA Transistor”. In: Langmuir, 26: 24, 2010, S. 19191–19198.

    Google Scholar 

  • Heer, W. A. D./ Chatelain, A./ Ugarte, D.: “A Carbon Nanotube Field-Emission Electron Source”. In: Science, 270, 1995, S. 1179–1180.

    Google Scholar 

  • Heremans, P./ Gelinck, G./ Müller, R./ Baeg, K./ Kim, D./ Noh, Y.: “Polymer and Organic Nonvolatile Memory Devices”. In: Chemistry of Materials, 23(3), 2011, S. 341–358.

    Google Scholar 

  • Hertenberger, S./ Rudolph, D./ Bichler, M./ Finley, J./ Abstreiter, G./ Koblmuller, G.: “Growth Kinetics in Position-Controlled and Catalyst-Free InAs Nanowire Arrays on Si (111) Grown by Selective Area Molecular Beam Epitaxy”. In: Journal of Applied Physics, 108: 11, 2010, S. 114316–114316.

    Google Scholar 

  • Hess, K.: Advanced Theory of Semiconductor Devices, New York: Wiley-Intersience 2000.

    Google Scholar 

  • Hirvensalo, M.: Quantum Computing, Berlin: Springer Verlag 2004.

    MATH  Google Scholar 

  • Huber, W. M./ Arendt, B./ Huggard, P. G./ Prettl, W.: “Square-Law Josephson Detection of Far-Infrared Radiation with Current-Biased Granular Tl2Ba2CaCu2O8 Thin Films”. In: Superconductor Science and Technology, 8: 10, 1995, S. 769–773.

    Google Scholar 

  • Iijima, S.: “Helical Microtubules of Fraphitic Carbon”. In: Nature, 354, 1991, S. 56–58.

    Google Scholar 

  • Imre, A./ Csaba, G./ Bernstein, G./ Porod, W./ Metlushko, V.: “Investigation on Shape-Dependent Switching of Coupled Nanomagnets”. In: Superlattices and Microstructures, 34, 2003, S. 513–518.

    Google Scholar 

  • Imre, A./ Csaba, G./ Ji, L./ Orlov, A./ Bernstein, G./ Porod, W.: “Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata”. In: Science, 311, 2006, S. 205–208.

    Google Scholar 

  • Ishigami, N./ Ago, H./ Imamoto, K./ Tsuji, M./ Iakoubovskii, K./ Minami, N.: “Crystal Plane Dependent Growth of Aligned Single-Walled Carbon Nanotubes on Sapphire”. In: Journal of the American Chemical Society, 130: 30, 2008, S. 9918–9924.

    Google Scholar 

  • Semiconductor Industry Association. The International Technology Roadmap for Semiconductors, 2005 edition. International SEMATECH: Albany, NY, 2005.

    Google Scholar 

  • Semiconductor Industry Association. The International Technology Roadmap for Semiconductors, 2007 edition. International SEMATECH: Albany, NY, 2007.

    Google Scholar 

  • Semiconductor Industry Association. The International Technology Roadmap for Semiconductors, 2008 update. International SEMATECH: Albany, NY, 2008.

    Google Scholar 

  • James, M./ Cheng, L./ Nackashi, D./ Yao, Y./ Flatt, A./ Angelo, S./ Mallouk, T./ Franzon, P.: “Nanocell Electronic Memories”. In: Journal of the American Chemical Society, 125: 43, 2003, S. 13279–13283.

    Google Scholar 

  • Jang, W. W./ Lee, J. O./ Yoon, J./ Kim, M./ Lee, J./ Kim, S./ Cho, K./ Kim, D./ Park, D./ Lee, W.: “Fabrication and Characterization of a Nanoelectromechanical Switch with 15-nm-Thick Suspension Air Gap”. In: Applied Physics Letters, 92: 10, 2008, S. 103110–103110–3.

    Google Scholar 

  • Jo, S. H./ Chang, T./ Ebong, I./ Bhadviya, B. B./ Mazumder, P./ Lu, W.: “Nanoscale Memristor Device as Synapse in Neuromorphic Systems”. In: Nano Letters, 10: 4, 2010, S. 1297–1301.

    Google Scholar 

  • Ju, X./ Savo, A./ Lugli, P./ Kiermaier, J./ Becherer, M./ Breitkreutz, S./ Schmitt-Landsiedel, D./ Porod, W./ Csaba, G.: “Computational Study of Domain-Wall-Induced Switching of Co/Pt Multilayer” (15th International Workshop on Computational Electronics, IWCE, Mai 2012), Madison, Wisconsin, U.S.A., 2012, S. 1–3 (Tagungsband).

    Google Scholar 

  • Ju, X./ Wartenburg, S./ Rezgani, J./ Becherer, M./ Kiermaier, J./ Breitkreutz, S./ Schmitt-Landsiedel, D./ Porod, W./ Lugli, P./ Csaba, G.: “Nanomagnet Logic from Partially Irradiated Co/Pt Nanomagnets”. In: IEEE Transactions on Nanotechnology, 11: 1, Januar 2012, S. 97–104.

    Google Scholar 

  • Kaeriyama, S./ Sakamoto, T./ Sunamura, H./ Mizuno, M./ Kawaura, H./ Hasegawa, T./ Terabe, K./ Nakayama, T./ Aono, M.: “A Nonvolatile Programmable solid-Electrolyte Nanometer Switch”. In: IEEE Journal ofSolid-State Circuits, 40: 1, 2005, S. 168–176.

    Google Scholar 

  • Kaertner, F. X./ Russer, P.: “Generation of Squeezed Microwave States by a Dc-Pumped Degenerate Parametric Josephson Junction Oscillator”. In: Physical Review A, 42: 9, 1990, S. 5601–5612.

    Google Scholar 

  • Kang, S. J./ Kocabas, C./ Ozel, T./ Shim, M./ Pimparkar, N./ Alam, M. A./ Rotkin, S. V./ Rogers, J. A.: “High-Performance Electronics Using Dense, Perfectly Aligned Arrays of Single-Walled Carbon Nanotubes”. In: Nature Nanotechnology, 2: 4, 2007, S. 230–236.

    Google Scholar 

  • Kärtner, F. X./ Schenzle, A.: “Analytic Solution for the Dissipative Anharmonic Quantum Oscillator and Semiclassical Analysis”. In: Physical Review A, 48: 2, 1993, S. 1009–1019.

    MathSciNet  Google Scholar 

  • Kasper, E./ Kissinger, D./ Russer, P./ Weigel, R.: „High Speeds in a Single Chip”. In: IEEE Microwave Magazine, 10: 7, 2009, S. 28–33.

    Google Scholar 

  • Kedzierski, J./ Hsu, P./ Healey, P./ Wyatt, P. W./ Keast, C. L./ Sprinkle, M./ Berger, C./ de Heer, W. A.: “Epitaxial Graphene Transistors on SiC Substrates”. In: IEEE Transactions on Electron Devices, 55: 8, 2008, S. 2078–2085.

    Google Scholar 

  • Khitun, A./ Nikonov, D./ Wang, K.: “Magnetoelectric Spin Wave Amplifier for Spin Wave Logic Circuits”. In: Journal of Applied Physics, 106, 2009, S. 123909.

    Google Scholar 

  • Klauk, H.: “Organic Thin-Film Transistors”. In: Chemical Society Reviews, 39, 2010,S. 2643–2666.

    Google Scholar 

  • Kocabas, C./ Kang, S. J./ Ozel, T./ Shim, M./ Rogers, J. A.: “Improved Synthesis of Aligned Arrays of Single-Walled Carbon Nanotubes and Their Implementation in Thin Film Type Transistors”. In: Journal of Physical Chemistry C, 111, 2007, S. 17879–17886.

    Google Scholar 

  • Kocabas, C./ Kim, H./ Banks, T./ Rogers, J. A./ Pesetski, A. A./ Baumgardner, J. E./ Krishnaswamy, S. V./ Zhang, H.: “Radio Frequency Analog Electronics Based on Carbon Nanotube Transistors”. In: Proceedings of the National Academy of Sciences, 105: 5, 2008, S. 1405–1409.

    Google Scholar 

  • Kocabas, C./ Dunham, S./ Cao, Q./ Cimino, K./ Ho, X./ Kim, H. S./ Dawson, D./ Payne, J./ Stuenkel, M./ Zhang, H. et al.: “High-Frequency Performance of Submicrometer Transistors That Use Aligned Arrays of Single-Walled Carbon Nanotubes”. In: Nano Letters, 9: 5, 2009, S. 1937–1943.

    Google Scholar 

  • Koo, H. C./ Kwon, J. H./ Eom, J./ Chang, J./ Han, S. H./ Johnson, M.: “Control of Spin Precession in a Spin-Injected Field Effect Transistor”. In: Science, 325, 2009, S. 1515–1518.

    Google Scholar 

  • Koswatta, S. O./ Lundstrom, M. S./ Nikonov, D. E.: “Performance Comparison Between p-i-n Tunneling Transistors and Conventional MOS-FETs”, In: IEEE Transactions on Electron Devices, 56: 3, 2009, S. 456–465.

    Google Scholar 

  • Kuzum, D./ Krishnamohan, T./ Nainani, A./ Sun, Y./ Pianetta, P. A./ Wong, H. S./ Saraswat, K. C.: “High-Mobility Ge N-MOSFETs and Mobility Degradation Mechanisms”. In: IEEE Transactions on Electron Devices, 58: 1, 2011, S. 59–66.

    Google Scholar 

  • Kuzum, D./ Jeyasingh, R./ Lee, B./ Wong, H.: “Nanoelectronic Programmable Synapses Based on Phase Change Materials for Brain-Inspired Computing”. In: Nano Letters, 12(5), 2012, S. 2179–2186.

    Google Scholar 

  • Lacquaniti, V./ Cagliero, C./ Maggi, S./ Steni, R./ Andreone, D./ Sosso, A.: “RF Properties of Overdamped SIS Junctions”. In: IEEE Transactions on Applied Superconductivity, 15: 2, 2005, S. 114–116.

    Google Scholar 

  • Landauer, R.: “Irreversibility and Heat Generation in the Computing Process”. In: IBM Journal of Research and Development, 44: 1, 2000, S. 261–269.

    MathSciNet  Google Scholar 

  • Lau, C./ Stewart, D./ Williams, R./ Bockrath, M.: “Direct Observation of Nanoscale switching Centers in Metal/Molecule/Metal Structures”. In: Nano Letters, 4: 4, 2004, S. 569–572.

    Google Scholar 

  • Lee, M./ Park, Y./ Suh, D./ Lee, E./ Seo, S./ Kim, D./ Jung, R./ Kang, B./ Ahn, S./ Lee, C. B./ Seo, D. H./ Cha, Y./ Yoo, I./ Kim, J./ Park, B. H.: “Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory”. In: Advanced Materials, 19: 22, 2007, S. 3919–3923.

    Google Scholar 

  • Lee, C./Yu, L./ Chen, H.: “Memory Bistable Mechanisms of Organic Memory Devices”. In: Applied Physics Letters, 97: 4, 2010, S. 043301–043301–3.

    Google Scholar 

  • Lee, M./ Lee, C. B./ Lee, D./ Lee, S. R./ Chang, M./ Hur, J. H./ Kim, Y./ Kim, C./ Seo, D. H./ Seo, S./ Chung, U./ Yoo, I./ Kim, K.: “A Fast, High-Endurance and Scalable Non-Volatile Memory Device Made from Asymmetric Ta2O5x/TaO2x Bilayer Structures”. In: Nature Materials, 10: 8, 2011, S. 625–630.

    Google Scholar 

  • Lemme, M./ Echtermeyer, T./ Baus, M./ Kurz, H.: “A Graphene Field-Effect Device”. In: IEEE Electron Device Letters, 28: 4, 2007, S. 282–284.

    Google Scholar 

  • Lent, C./ Isaksen, B./ Lieberman, M.: “Molecular Quantum-Dot Cellular Automata”. In: Journal of the American Chemical Society, 125: 4, 2003, S. 1056–1063.

    Google Scholar 

  • Li, S./ Yu, Z./ Yen, S. F./ Tang, W. C./ Burke, P. J.: “Carbon Nanotube Transistor Operation at 2.6 GHz”. In: Nano Letters, 4: 4, 2004, S. 753–756.

    Google Scholar 

  • Li, Q./ Koo, S./ Edelstein, M. D./ Suehle, J. S./ Richter, C. A.: “Silicon Nanowire Electromechanical Switch for Logic Device Application”. In: MRS Online Proceedings Library, 1018, 2007, S. 1018–EE09–07.

    Google Scholar 

  • Li, X./ Wang, X./ Zhang, L./ Lee, S./ Dai, H.: “Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors”. In: Science, 319, 2008, S. 1229–1232.

    Google Scholar 

  • Li, X./ Cai, W./ An, J./ Kim, S./ Nah, J./ Yang, D./ Piner, R./ Velamakanni, A./ Jung, I./ Tutuc, E./ Banerjee, S. K./ Colombo, L./ Ruoff, R. S.: “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils”. In: Science, 324, 2009, S. 1312–1314.

    Google Scholar 

  • Li, X./ Magnuson, C./ Venugopal, A./ An, J./ Suk, J./ Han, B./ Borysiak, M./ Cai, W./ Velamakanni, A./ Zhu, Y. et al.: “Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process”. In: Nano letters, 10(11), 2010.

    Google Scholar 

  • Li, C./ Erve, O.van’t./ Jonker, B.: “Electrical injection and detection of Spin Accumulation in Silicon at 500 K with Magnetic Metal/Silicon Dioxide Contacts”. In: Nature Communications, 2, 2011, S. 245.

    Google Scholar 

  • Li, P./ Csaba, G./ Sankar, V. K./ Ju, X./ Lugli, P./ Hu, X. S./ Niemier, M./ Porod, W./ Bernstein, G. H.: “Switching Behavior of Lithographically Fabricated Nanomagnets for Logic Applications”, in: Journal of Applied Physics, 111: 7, März 2012, S. 07B911–07B911–3.

    Google Scholar 

  • Liao, L./ Lin, Y./ Bao, M./ Cheng, R./ Bai, J./ Liu, Y./ Qu, Y./ Wang, K. L./ Huang, Y./ Duan, X.: “High Speed Graphene Transistors with a Self-Aligned Nanowire Gate”. In: Nature, 467, 2010, S. 305–308.

    Google Scholar 

  • Likharev, K. K.: “Single-Electron Devices and Their Applications”. In: Proceedings of the IEEE, 87: 4, 1999, S. 606–632.

    Google Scholar 

  • Lin, Y./ Chiu, H./ Jenkins, K. A./ Farmer, D. B./ Avouris, P./ Valdes-Garcia, A.: “Dual-Gate Graphene FETs with fTof 50 GHz”. In: IEEE Electron Devices Letters, 99, 2009, S. 1–3.

    Google Scholar 

  • Lortscher, E./ Ciszek, J./ Tour, J./ Riel, H.: “Reversible and Controllable Switching of a Single-Molecule Junction”. In: Small, 2: 8–9, 2006, S. 973–977.

    Google Scholar 

  • Lu, W./ Xie, P./ Lieber, C. M.: “Nanowire Transistor Performance Limits and Applications”. In: IEEE Transactions on Electron Devices, 55: 11, 2008, S. 2859–2876.

    Google Scholar 

  • Lu, W./ Lieber, C.: “Nanoelectronics From the Bottom Up”. In: Nature Materials, 6: 11, 2007, S. 841–850.

    Google Scholar 

  • Makhlin, Y./ Schon, G./ Shnirman, A.: “Nano-Electronic Circuits as Quantum Bits”. In: Proceedings of The 2000 IEEE International Symposium on Circuits and Systems (SCAS 2000 Geneva, Volume 2), 2000, S. 241–244.

    Google Scholar 

  • Makhlin, Y./ Schon, G./ Shnirman, A.: “Quantum-State Engineering with Josephson-Junction Devices”. In: Reviews of Modern Physics, 73, 2001, S. 357–400.

    Google Scholar 

  • Meindl, J. D./ Chen, Q./ Davis, J. A.: “Limits on Silicon Nanoelectronics for Terascale Integration”. In: Science, 293, 2001, S. 2044–2049.

    Google Scholar 

  • Meric, I./ Han, M. Y./ Young, A. F./ Ozyilmaz, B./ Kim, P./ Shepard, K. L.: “Current Saturation in Zero-Bandgap, Top-Gated Graphene Field-Effect Transistors”. In: Nature Nanotechnology, 3: 11, 2008, S. 654–659.

    Google Scholar 

  • Moon, J./ Curtis, D./ Hu, M./ Wong, D./ McGuire, C./ Campbell, P./ Jernigan, G./ Tedesco, J./ VanMil, B./ Myers-Ward, R./ Eddy, C./ Gaskill, D.: “Epitaxial-Graphene RF Field-Effect Transistors on Si-Face 6H-SiC Substrates”. In: IEEE Electron Devices Letters, 30: 6, 2009, S. 650–652.

    Google Scholar 

  • Moon, J./ Curtis, D./ Hu, M./ Wong, D./ Campbell, P./ Jernigan, G./ Tedesco, J. L./ Van Mil, B./ Myers-Ward, R. L./ Eddy, C. et al.: “Development Toward Wafer-Scale Graphene RF Electronics” (IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 11.–13. Januar 2010), New Orleans, LA, U.S.A., 2010, S. 1–3 (Tagungsband).

    Google Scholar 

  • Morozov, S. V./ Novoselov, K. S./ Katsnelson, M. I./ Schedin, F./ Elias, D. C./ Jaszczak, J. A./ Geim, A. K.: “Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer”. In: Physical Review Letters, 100: 1, 2008, S. 16602–16605.

    Google Scholar 

  • Munday, J. N./ Capasso, F./ Parsegian, V. A./ Bezrukov, S. M.: “Measurements of the Casimir-Lifshitz Force in Fluids: The Effect of Electrostatic Forces and Debye Screening”. In: Physical Review A, 78: 3, 2008, S. 32109.

    Google Scholar 

  • Munday, J. N./ Capasso, F./ Parsegian, V. A.: “Measured Long-Range Repulsive Casimir-Lifshitz Forces”. In: Nature, 457: 170, 2009, S. 170–173.

    Google Scholar 

  • Nayfeh, O. M./ Chleirigh, C. N./ Hennessy, J./ Gomez, L./ Hoyt, J. L./ Antoniadis, D. A.: “Design of Tunneling Field-Effect Transistors Using Strained-Silicon/Strained-Germanium Type-II Staggered Heterojunctions”. In: IEEE Electron Device Letters, 29: 9, 2008, S. 1074–1077.

    Google Scholar 

  • Ng, H. T./ Han, J./ Yamada, T./ Nguyen, P./ Chen, Y. P./ Meyyappan, M.: “Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor”. In: Nano Letters, 4: 7, 2004, S. 1247–1252.

    Google Scholar 

  • Nielssen, M. A./ Chuang, I. L.: Quantum Computation and Quantum Information, Cambridge: Cambridge University Press 2000.

    Google Scholar 

  • Nougaret, L./ Happy, H./ Dambrine, G./ Derycke, V./ Bourgoin, J. P./ Green, A. A./ Hersam, M. C.: “80 GHz Field-Effect Transistors Produced Using High Purity Semiconducting Single-Walled Carbon Nanotubes”. In: Applied Physics Letters, 94: 24, 2009, S. 243505-243505-3.

    Google Scholar 

  • Novoselov, K. S./ Geim, A. K./ Morozov, S. V./ Jiang, D./ Zhang, Y./ Dubonos, S. V./ Grigorieva, I. V./ Firsov, A. A.: “Electric Field Effect in Atomically Thin Carbon Films”. In: Science, 306, 2004, S. 666–669.

    Google Scholar 

  • Novoselov, K. S./ Geim, A. K./ Morozov, S. V./ Jiang, D./ Grigorieva, M. I./ Dubonos, S. V./ Firsov, A. A.: “Two-Dimensional Gas of Massless Dirac Fermions in Graphene”. In: Arxiv preprint cond-mat/0509330, 2005.

    Google Scholar 

  • Orlov, A./ Imre, A./ Csaba, G./ Ji, L./ Porod, W./ Bernstein, G.: “Magnetic Quantum-dot Cellular Automata: Recent Developments and Prospects”. In: Journal of Nanoelectronics and Optoelectronics, 3: 1, 2008, S. 55–68.

    Google Scholar 

  • Paternostro, M./ Falci, G./ Kim, M./ Palma, G. M.: “Entanglement Between Two Superconducting QUBITs via Interaction with Nonclassical Radiation”. In: Physical Review B, 69, 2004, S. 214502.

    Google Scholar 

  • Perebeinos, V./ Tersoff, J./ Avouris, P.: “Electron-Phonon Interaction and Transport in Semiconducting Carbon Nanotubes”. In: Physical Review Letters, 94: 8, 2005, S. 86802–86805.

    Google Scholar 

  • Porod, W.: “Quantum-dot Devices and Quantum-dot Cellular Automata”. In: Journal of the Franklin Institute, 334B: 5/6, 1997, S. 1147–1175.

    MATH  Google Scholar 

  • Pro, T./ Buckley, J./ Huang, K./ Calborean, A./ Gely, M./ Delapierre, G./ Ghibaudo, G./ Duclairoir, F./ Marchon, J. C./ Jalaguier, E./ Maldivi, P./ De Salvo, B./ Deleonibus, S.: “Investigation of Hybrid Molecular/Silicon Memories with Redox-Active Molecules Acting as Storage Media”. In: IEEE Transactions on Nanotechnology, 8: 2, 2009, S. 204–213.

    Google Scholar 

  • Ren, Z. F./ Huang, Z. P./ Xu, J. W./ Wang, J. H./ Bush, P./ Siegal, M. P./ Provencio, P. N.: “Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass”. In: Science, 282, 1998, S. 1105–1107.

    Google Scholar 

  • Rosezin, R./ Linn, E./ Nielen, L./ Kügeler, C./ Bruchhaus, R./ Waser, R.: “Integrated Complementary Resistive Switches for Passive High-Density Nanocrossbar Arrays”. In: IEEE Electron Device Letters, 32: 2, 2011, S. 191–193.

    Google Scholar 

  • Rothberg, J. M./ Hinz, W./ Rearick, T. M./ Schultz, J./ Mileski, W./ Davey, M./ Leamon, J. H./ Johnson, K./ Milgrew M. J./ Edwards, M./ Hoon, J./ Simons, J. F./ Marran, D./ Myers, J. W./ Davidson, J. F./ Branting, A./ Nobile, J. R./ Puc, B. P./ Light, D./ Clark, T. A./ Huber, M./ Branciforte, J. T./ Stoner, I. B./ Cawley, S. E./ Lyons, M./ Fu, Y./ Homer, N./ Sedova, M./ Miao, X./ Reed, B./ Sabina, J./ Feierstein, E./ Schorn, M./ Alanjary, M./ Dimalanta, E./ Dressman, D./ Kasinskas, R./ Sokolsky, T./ Fidanza, J. A./ Namsaraev, E./ McKernan, K. J./ Williams, A./ Roth, G. T./ Bustillo, J.: “An Integrated Semiconductor Device Enabling Non-Optical Genome Sequencing”. In: Nature, 475, 20. Juli 2011, S. 348–52.

    Google Scholar 

  • Russer, P.: “Influence of Microwave Radiation on Current-Voltage Characteristic of Superconducting Weak Links”. In: Journal of Applied Physics, 43, 1972, S. 2008–2010.

    Google Scholar 

  • Russer, P./ Fichtner, N./ Lugli, P./ Porod, W./ Russer, J. A./ Yordanov, H.: “Nanoelectronics Based Monolithic Integrated Antennas for Electromagnetic Sensors and for Wireless Communications”. In: IEEE Microwave Magazine, 11: 7, 2010, S. 58–71.

    Google Scholar 

  • Russer, P./ Fichtner, N.: “Nanoelectronics in Radio-Frequency Technology”. In: IEEE Microwave Magazine 11 (2010), Nr. 3, S. 115–135.

    Google Scholar 

  • Russer, P./ Russer, J. A.: “Nanoelectronic RF Josephson Devices”. In: IEEE Transactions on Microwave Theory and Techniques, 59: 10, 2011, S. 2685–2701.

    Google Scholar 

  • Saito, R./ Dresselhaus, G./ Dresselhaus, M. S.: Physical Properties of Carbon Nanotubes, London: Imperial College Press 1998.

    Google Scholar 

  • Sakamoto, T./ Sunamura, H./ Kawaura, H./ Hasegawa, T./ Nakayama, T./ Aono, M.: “Nanometer-Scale Switches Using Copper Sulfide”. In: Applied Physics Letters, 82, 2003, S. 3032

    Google Scholar 

  • Sakamoto, T./ Iguchi, N./ Aono, M.: “Nonvolatile Triode Switch Using Electrochemical Reaction in Copper Sulfide”. In: Applied Physics Letters, 96, 2010, S. 252104.

    Google Scholar 

  • Sato, M./ Alvarez, G. A./ Utagawa, T./ Tanabe, K./ Morishita, T.: “Characteristics of NdBa2Cu3O7⊠δ/PrBa2Cu3O7⊠δ/NdBa2Cu3O7⊠δ Planar Josephson Junctions”. In: Japanese Journal of Applied Physics, 41, 2002, S. 5572–5577.

    Google Scholar 

  • Scarpa G. et al.: “Pattern Generation by Using High-Resolution Nanoimprinting and Nanotransfer Printing Techniques”. In: Proceedings IEEE-NANO 2009, Genoa, Italy, 2009, S. 432–438.

    Google Scholar 

  • Scarpa, G./ Idzko, S. G/ Thalhammer, S.: “Biocompatibility Studies of Functionalized Regioregular Poly(3-hexylthiophene) Layers for Sensing Applications”. In: Macromole-cular Bioscience, 10: 4, 2010, S. 378–383.

    Google Scholar 

  • Scarpa, G. et al.: “Patterning Poly(3-hexylthiophene) (P3HT) in the Sub-50-nm Region by Nanoimprint Lithography”. In: IEEE Transactions on Nanotechnology, 10: 3, Mai 2011, S. 482–488.

    Google Scholar 

  • Scherer, A./ Cheng, C. C./ Yablonovich, E./ Arbet-Engels, V.: “Photonic Bandgap Crystals at Optical Wavelengths” (Pacific Rim Conference on Lasers and Electro-Optics, 1995. Technical Digest. CLEO/Pacific Rim’95,, Chiba, Japan 1995, S. 29.

    Google Scholar 

  • Schmitt-Landsiedel, D./ Werner, C.: “Innovative Devices for Integrated Circuits-A Design”. In: Solid-State Electronics, 53: 4, 2009, S. 411–417.

    Google Scholar 

  • Scott, J./ Bozano, L.: “Nonvolatilememoryelements Based on Organic Materials”. In: Advanced Materials, 19: 11, 2007, S. 1452–1463.

    Google Scholar 

  • Seabaugh, A. C./ Zhang, Q.: “Low-Voltage Tunnel Transistors for Beyond CMOS Logic”. In: Proceedings of the IEEE, 98: 12, 2010, S. 2095–2110.

    Google Scholar 

  • Sheriff, B. A./ Wang, D./ Heath, J. R./ Kurtin, J. N.: “Complementary Symmetry Nanowire Logic Circuits: Experimental Demonstrations and in Silico Optimizations”. In: ACS Nano, 2: 9, 2008, S. 1789–1798.

    Google Scholar 

  • Sinha, S./ Russer, P.: “Quantum Computing Algorithm for Electromagnetic Field Simulation”. In: J. Quantum Information Processing, 9: 3, 2009, S. 385–404.

    MathSciNet  Google Scholar 

  • Snider, G./ Amlani, A. O. I./ Zuo, X./ Bernstein, G./ Lent, C./ Merz, J./ Porod, W.: “Quantum-dot Cellular Automata”. In: Journal of Vacuum Science & Technology A, 17: 4, 1999, S. 1394–1398.

    Google Scholar 

  • Snider, G. L./ Orlov, A. O./ Amlani, I./ Zuo, X./ Bernstein, G. H./ Lent, C. S./ Merz, J. L./ Porod, W.: “Quantum-dot Cellular Automata: Review and Recent Experiments”. In: Journal of Applied Physics, 85: 8, 1999, S. 4283–4285.

    Google Scholar 

  • Solymar, L.: Lectures on Electromagnetic Theory, Oxford: Oxford University Press 1984.

    Google Scholar 

  • Song, S./ Cho, B./ Kim, T./ Ji, Y./ Jo, M./ Wang, G./ Choe, M./ Kahng, Y./ Hwang, H./ Lee, T.: “Three-Dimensional Integration of Organic Resistive Memory Devices”. In: Advanced Materials, 22: 44, 2010, S. 5048–5052.

    Google Scholar 

  • Song, H./ Reed, M./ Lee, T.: “Single Molecule Electronic Devices”. In: Advanced Materials, 23: 14, 2011, S. 1583–1608.

    Google Scholar 

  • Strukov, D. B./ Snider, G. S./ Stewart, D. R./ Williams, R. S.: “The Missing Memristor Found”. In: Nature, 453, 2008, S. 80–83.

    Google Scholar 

  • Sugahara, S./ Nitta, J.: “Spin-Transistor Electronics: An Overview and Outlook”. In: Proceedings of the IEEE, 98: 12, 2010, S. 2124–2154.

    Google Scholar 

  • Tedde, S. F./ Kern, J./ Sterzl, T./ Furst, J./ Lugli, P./ Hayden, O.: “Fully Spray Coated Organic Photodiodes”. In: Nano Letters, 9, 2009, S. 980–983.

    Google Scholar 

  • Thielmann, A.: “Blockaden bei der Etablierung der Nanoelektronik”. In: TAB Brief, 35 (Büro für Technikfolgen-Abschätzung beim Deutschen Bundestag), 2009, S. 36–39.

    Google Scholar 

  • Thompson, S. E./ Parthasarathy, S.: “Moore’s Law: The Future of Si Microelectronics”. In: Materials Today, 9: 6, 2006, S. 20–25.

    Google Scholar 

  • Thunich, S./ Prechtel, L./ Spirkoska, D./ Abstreiter, G./ Fontcubertai Morral, A./ Holleitner, A. W.: “Photocurrent and Photoconductance Properties of a GaAs Nanowire”. In: Applied Physics Letters, 95, 2009, S. 083111.

    Google Scholar 

  • Tian, L./ Lloyd, S./ Orlando, T. P.: “Decoherence and Relaxation of a Superconducting Quantum Bit During Measurement”. In: Physical Review B, 65: 14, 2002, S. 144516.

    Google Scholar 

  • Tian, L./ Zoller, P.: “Quantum Computing with Atomic Josephson Junction Arrays”. In: Physical Review A, 68, 2003, S. 042321.

    Google Scholar 

  • Tinkham, M.: Introduction to Superconductivity:Second Edition (Dover Books on Physics), Dover: Dover Publications, 2004 (2. Aufl.).

    Google Scholar 

  • Toffoli, T.: Cellular Automata Machines: A New Environment for Modeling, MIT Press, 1987.

    Google Scholar 

  • Torres, C. M. S./ Zankovych, S./ Seekamp, J./ Kam, A. P./ Cedeno, C. C./ Hoffmann, T./ Ahopelto, J./ Reuther, F./ Pfeiffer, K./ Bleidiessel, G./ Gruetzner, G./ Maximov, M. V./ Heidari, B.: “Nanoimprint Lithography: An Alternative Nanofabrication Approach”. In: Material Science and Engineering: C, 23, 2003, S. 23–31.

    Google Scholar 

  • Tricarico, S./ Bilotti, F./ Vegni, L.: “Optical Cloaking with Cylindrical Plasmonic Implants” (International Conference on Electromagnetics in Advanced Applications, ICEAA’09, 2009), Torino, Italy, 2009, S. 351–354 (Tagungsband).

    Google Scholar 

  • Valov, I./ Waser, R./ Jameson, J./ Kozicki, M.: “Electrochemical Metallization Memories-Fundamentals, Applications, Prospects”. In: Nanotechnology, 22, 2011, S. 254003.

    Google Scholar 

  • Varga, E./ Orlov, A./ Niemier, M. T./ Hu, X. S./ Bernstein, G. H./ Porod, W.: “Experimental Demonstration of Fanout for Nanomagnetic Logic”. In: IEEE Transactions on Nanotechnology, 9: 6, 2010, S. 668–670.

    Google Scholar 

  • Waldmann, D./ Jobst, J./ Speck, F./ Seyller, T./ Krieger, M./ Weber, H. B.: “Bottom-Gated Epitaxial Graphene”. In: Nature Materials, 10: 5, 2011, S. 357–360.

    Google Scholar 

  • Wang, Z./ Hamasaki, K./ Kinoshita, M./ Yamashita, T./ Matsui, T./ Komiyama, B.: “Millimeter-Wave Response in NbN(g)/Al Nanobridges”. In: IEEE Transactions on Magnetics, 27: 2, 1991, S. 2720–2723.

    Google Scholar 

  • Wang, D./ Yu, Z./ McKernan, S./ Burke, P.: “Ultrahigh Frequency Carbon Nanotube Transistor Based on a Single Nanotube”. In: IEEE Transactions on Nanotechnology, 6: 4 2007, S. 400–403.

    Google Scholar 

  • Wang, Z./ Xu, H./ Zhang, Z./ Wang, S./ Ding, L./ Zeng, Q./ Yang, L./ Pei, T./ Liang, X./ Gao, M./ Peng, L.: “Growth and Performance of Yttrium Oxide as an Ideal High-Gate Dielectric for Carbon-Based Electronics”. In: Nano Letters, 10: 6, 2010, S. 2024–2030.

    Google Scholar 

  • Waser, R.: Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, Weinheim, Wiley-VCH, 2012.

    Google Scholar 

  • Waser, R./ Aono, M.: “Nanoionics-Based Resistive Switching Memories”. In: Nature Materials, 6: 11, 2007, S. 833–840.

    Google Scholar 

  • Waser, R./ Dittmann, R./ Staikov, G./ Szot, K.: “Redox-Based Resistive Switching Memories-Nanoionic Mechanisms, Prospects, and Challenges”. In: Advanced Materials, 21: 25-26, 2009, S. 2632–2663.

    Google Scholar 

  • Weber, W. M./ Geelhaar, L./ Graham, A. P./ Unger, E./ Duesberg, G. S./ Liebau, M./ Pamler, W./ Chèze, C./ Riechert, H./ Lugli, P./ Kreupl, F.: “Silicon-Nanowire Transistors with Intruded Nickel-Silicide Contacts”. In: Nano Letters, 6: 12, 2006, S. 2660–2666.

    Google Scholar 

  • Werner, R. F.: “Aspects of Nonlinearity in Quantum Mechancs” (Proc. Conference on Nonlinear Dynamics of Electronic Systems, NDES 2012, Wolfenbüttel), Wolfenbüttel, 2012 (Manuskript).

    Google Scholar 

  • Wernersson, L. E./ Thelander, C./ Lind, E./ Samuelson, L.: “III-V Nanowires-Extending a Narrowing Road”. In: Proceedings of the IEEE, 98: 12, 2010, S. 2047–2060.

    Google Scholar 

  • Weste, N./ Harris, D.: CMOS VLSI DesignA Circuits and Systems Perspective, Boston: Addison Wesley, 2005 (3. Aufl.).

    Google Scholar 

  • Wiedemann, W. et al.: “Nanostructured Interfaces in Polymer Solar Cells”. In: Applied Physics Letters, 96: 26, 2010, S. 263109-1-263109-3.

    Google Scholar 

  • Williams, R.: “How We Found The Missing Memristor”. In: Spectrum, IEEE, 45: 12, 2008, S. 28–35.

    Google Scholar 

  • Wolf, S. A./ Awschalom, D. D./ Buhrman, R. A./ Daughton, J. M./ Molnar, S. V./ Roukes, M. L./ Chtchelkanova, A. Y./ Treger, D. M.: “Spintronics: A Spin-Based Electronics Vision for the Future”. In: Science, 294, 2001, S. 1488–1495.

    Google Scholar 

  • Xia, Q./ Robinett, W./ Cumbie, M./ Banerjee, N./ Cardinali, T./ Yang, J./ Wu, W./ Li, X./ Tong, W./ Strukov, D. et al.: “Memristor — CMOS Hybrid Integrated Circuits for Reconfigurable Logic”. In: Nano Letters, 9: 10, 2009, S. 3640–3645.

    Google Scholar 

  • Xia, L./ Boos, J./ Bennett, B./ Ancona, M./ Del Alamo, J.: “Hole Mobility Enhancement in In0. 41Ga0. 59Sb Quantum-Well Field-Effect Transistors”. In: Applied Physics Letters, 98: 5, 2011, S. 053505-053505-3.

    Google Scholar 

  • Xiang, J./ Lu, W./ Hu, Y./ Wu, Y./ Yan, H./ Lieber, C.: “Ge/Si Nanowire Heterostructures as High-Performance Field-Effect Transistors”. In: Nature, 441, 2006, S. 489–493.

    Google Scholar 

  • Yan, H./ Yang, P.: “Semiconductor Nanowires: Functional Building Blocks for Nanotechnology”. In: The Chemistry of Nanostructured Materials, River Edge, NJ: World Scientific, 2004.

    Google Scholar 

  • Yordanov, H./ Russer, P.: Area-Efficient Integrated Antennas for Inter-Chip Communication (Proceedings of the 40th European Microwave Conference, Paris), Paris, 2010 (Manuskript).

    Google Scholar 

  • Zhang, Q./ Zhao, W./ Seabaugh, A.: “Low-Subthreshold-Swing Tunnel Transistors”. In: IEEE Electron Device Letters, 27: 4, 2006, S. 297–300.

    MATH  Google Scholar 

  • Zhang, G./ van Roosmalen, A. (Hrsg.): More than Moore, Berlin, Heidelberg, New York: Springer Verlag 2009.

    Google Scholar 

  • Zhirnov, V./ Cavin, R./ Leeming, G./ Galatsis, K.: “An Assessment of Integrated Digital Cellular Automata Architectures”. In: Computer, 41: 1, 2008, S. 38–44.

    Google Scholar 

  • Zhirnov, V. V./ Meade, R./ Cavin, R. K./ Sandhu, G.: “Scaling Limits of Resistive Memories”. In: Nanotechnology, 22: 25, 2011, S. 254027.

    Google Scholar 

  • Zhou, W./ Rutherglen, C./ Burke, P. J.: “Wafer Scale Synthesis of Dense Aligned Arrays of Single-Walled Carbon Nanotubes”. In: Nano Research, 1: 2, 2008, S. 158–165.

    Google Scholar 

  • Zia, R./ Schuller, J./ Chandran, A./ Brongersma, M.: “Plasmonics: The Next Chip-Scale Technology”. In: Materials Today, 9: 7–8, 2006, S. 20–27.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Russer, P., Lugli, P., Hess, K., Russer, J., Scarpa, G. (2013). Fernziele der Nanoelektronik. In: Russer, P., Lugli, P., Weitze, MD. (eds) Nanoelektronik. acatech DISKUSSION. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35791-6_12

Download citation

Publish with us

Policies and ethics