Skip to main content

On the Isotropic Elastic Properties of Graphene Crystal Lattice

  • Chapter
  • First Online:
Surface Effects in Solid Mechanics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 30))

Abstract

Graphene is a monolayer of carbon atoms packed into a two-dimensional honeycomb lattice. This allotrope can be considered as mother of all graphitic forms of carbon. The elastic in-plane properties of graphene are studied. Nowadays graphene often is simulated as a two-dimensional elastic continuum. It is shown in this work that if this continuum has the same symmetric properties as graphene crystal, then the continuum is isotropic while the small deformations are considered. A simple and mathematically rigorous proof of this statement is given. The proof is based on the orthogonal transformation of the coordinates of the continual stress and strain tensors and comparison of the elastic tensor components before and after transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anton, H.: Elementary Linear Algebra. Wiley, New York (1973)

    Google Scholar 

  2. Ayres, F.: Matrices Schaum’s Outlines. McGraw-Hill, New York (1962)

    Google Scholar 

  3. Blakslee, O.: Elastic constants of compression-annealed pyrolytic graphite. J. Appl. Phys. 41(8), 3373–3383 (1970)

    Article  CAS  Google Scholar 

  4. Boehm, H.P., Setton, R., Stumpp, E.: Nomenclature and terminology of graphite intercalation compounds. Pure Appl. Chem. 66(9), 1893–1901 (1994)

    Article  CAS  Google Scholar 

  5. Bosak, A., Krisch, M., Mohr, M., Maultzsch, J., Thomsen, C.: Elasticity of single-crystalline graphite: inelastic x-ray scattering study. Phys. Rev. B 75(15), 153408 (2007)

    Google Scholar 

  6. El-Sayed, F.A., Jones, R., Burgess, I.: A theoretical approach to the deformation of honeycomb based composite materials. Composites 10(4), 209–214 (1979)

    Article  Google Scholar 

  7. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    Article  CAS  Google Scholar 

  8. Gibson, L.J., Ashby, M.F., Schajer, G.S., Robertson, C.I.: The mechanics of two-ddimensional cellular materials. In: Proc. R. Soc. Lond. A Math. Phys. Sci. 382(1782), 25–42 (1982)

    Google Scholar 

  9. Gillis, P.: Calculating the elastic constants of graphite. Carbon 22(4–5), 387–391 (1984)

    Article  CAS  Google Scholar 

  10. Masters, I., Evans, K.: Models for the elastic deformation of honeycombs. Compos. Struct. 35(4), 403–422 (1996)

    Article  Google Scholar 

  11. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  CAS  Google Scholar 

  12. Nowacki, W.: Teoria Sprezystosci. Panstwowe Wydawnictwo Naukowe, Warszawa (1970)

    Google Scholar 

  13. Ogden, R.: Non-linear Elastic Deformations. Dover Publications, Mineola NY (1984)

    Google Scholar 

  14. Mouras, S., Hamm, A., Djurado, D., Cousseins, J.-C.: Synthesis of first stage graphite intercalation compounds with fluorides. Revue de Chimie Minerale 24(5), 572–582 (1987)

    Google Scholar 

  15. Slawinski, M.: Waves and Rays in Elastic Continua. World Scientific Publishing Co Pte Ltd, Singapore (2010)

    Google Scholar 

  16. Sneddon, I., Berry, D.: Classical Theory of Elasticity. Handbuch der Physik. Springer, Berlin (1958)

    Google Scholar 

  17. Zhang, J., Ashby, M.: The out-of-plane properties of honeycombs. Int. J. Mech. Sci. 34(6), 475–489 (1992)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of MINILUBES (FP7 Marie Curie ITN network 216011-2) by the European Commission and Russian Foundation for Basic Research (grant 12-01-00521-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor E. Berinskii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berinskii, I.E., Borodich, F.M. (2013). On the Isotropic Elastic Properties of Graphene Crystal Lattice. In: Altenbach, H., Morozov, N. (eds) Surface Effects in Solid Mechanics. Advanced Structured Materials, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35783-1_3

Download citation

Publish with us

Policies and ethics