Skip to main content

Mathematical Modeling of Phenomena Caused by Surface Stresses in Solids

  • Chapter
  • First Online:
Surface Effects in Solid Mechanics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 30))

Abstract

Interfacial region between two bulk phases and the transition region near the line of contact of three media are considered as a two-dimensional and one-dimensional continuum, respectively. A survey of works on mathematical modeling of phenomena in such systems is presented. The equation of the linear momentum balance for an interface generalizes the classical Laplace equation and that for a contact line generalizes the Young equation of the capillarity theory. The influence of nonuniform surface tension on the stress field in an infinite cylinder is investigated. The anisotropy of wetting is discussed and explained on the basis of the generalized Young equation taking into account the tensor character of surface stresses. Several applications of the results in the theory of surface defects are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe, S., Sheridan, J.T.: Curvature correction model of droplet profiles. Phys. Lett. A 253, 317–321 (1999)

    Article  CAS  Google Scholar 

  2. Adamson, A.W., Gast, A.P.: Physical Chemistry of Surfaces, 6th edn. Wiley, New York (1997)

    Google Scholar 

  3. Alekhin, V.P.: Physics of Strength and Plasticity of the Surface Layers of Materials. Nauka, Moscow (1983) (in Russian)

    Google Scholar 

  4. Alexander, J.I.D., Johnson, W.C.: Thermomechanical equmbrium in solid-fluid systems with curved interfaces. J. Appl. Phys. 58, 816–824 (1985)

    Article  CAS  Google Scholar 

  5. Altenbach, H., Eremeev, V.A.: On the shell theory on the nanoscale with surface stresses. Int. J. Eng. Sci. 49, 1294–1301 (2011)

    Article  CAS  Google Scholar 

  6. Altenbach, H., Eremeev, V.A., Morozov, N.F.: On equations of the linear theory of shells with surface stresses taken into account. Mech. Solids 45, 331–342 (2010)

    Article  Google Scholar 

  7. Altenbach, J., Altenbach, H., Eremeyev V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80, 73–92 (2010)

    Google Scholar 

  8. Antman, S.S.: Nonlinear Problems of Elasticity, 2nd edn. Springer, New York (2005)

    Google Scholar 

  9. Borgardt, A.A., Krishtal, M.A., Povstenko, Y.Z., Katsman, A.V.: About the mechanism of nucleation of dislocations during spreading of fusible melts on a metal surface. Dokl. Acad. Sci. Ukr. SSR, Ser. A 2, 22–25 (1989) (in Russian)

    Google Scholar 

  10. Boruvka, L., Neumann, A.W.: Generalization of the classical theory of capillarity. J. Chem. Phys. 66, 5464–5476 (1977)

    Article  CAS  Google Scholar 

  11. Buff, F.P.: Curved fluid interfaces. I. The generalized Gibbs-Kelvin equation. J. Chem. Phys. 25, 146–153 (1956)

    Google Scholar 

  12. Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 1–38 (1994)

    Google Scholar 

  13. Casagrande, C., Fabre, P., Raphaël, E., Veyssié, M.: "Janus beads": realization and behavior at water/oil interfaces. Europhys. Lett. 9, 251–255 (1989)

    Article  CAS  Google Scholar 

  14. Casagrande, C., Veyssié, M.: Janus beads—realization and 1st observation of interfacial properties. C. R. Acad. Sci. Paris 306, 1423–1425 (1988)

    Google Scholar 

  15. Chatain, D.: Anisotropy of wetting. Annu. Rev. Mater. Res. 38, 45–70 (2008)

    Google Scholar 

  16. Chen, Y., He, B., Lee, J., Patankar, N.A.: Anisotropy in the wetting of rough surfaces. J. Colloid Interface Sci. 281, 458–464 (2005)

    Article  Google Scholar 

  17. Chung, J.Y., Youngblood, J.P., Stafford, C.M.: Anisotropic wetting on tunable micro-wrinkled surfaces. Soft Matter 3, 1163–1169 (2007)

    Article  CAS  Google Scholar 

  18. Chizmadzhev, Y.A., Markin, V.S., Tarasevich, M.P., Chirkov, Y.G: Macrokinetics of Processes in Porous Media. Nauka, Moscow (1971) (in Russian)

    Google Scholar 

  19. Cosserat, E., Cosserat, F.: Théorie des corps déformables. Paris, Hermann (1909)

    Google Scholar 

  20. De Coninck, J., Voué, M.: Spreading on heterogeneous substrates. Oil Gas Sci. Technol. 56, 97–104 (2001)

    Google Scholar 

  21. De Gennes, P.G., Taupin, C.: Microemulsions and the flexibility of oil/water interfaces. J. Phys. Chem. 86, 2294–2304 (1982)

    Article  Google Scholar 

  22. Elwing, H., Welin, S., Askendal, A., Nilsson, U., Lundström, I.: A wettability gradient method for studies of macromolecular interaction at the liquid/solid interface. J. Colloid Interface Sci. 119, 203–210 (1987)

    Article  CAS  Google Scholar 

  23. Fisher, G.M.C., Leitman, M.J.: On continuum thermodynamics with surfaces. Arch. Ration. Mech. Anal. 30, 225–262 (1968)

    Article  Google Scholar 

  24. Ghez, R.: A generalized Gibbsian surface. Surf. Sci. 4, 125–140 (1966)

    Article  Google Scholar 

  25. Ghez, R.: Equilibre méchanique et de forme de petits cristaux. Helv. Phys. Acta 41, 287–309 (1968)

    Google Scholar 

  26. Ghez, R.: Irreversible thermodynamics of a stationary interface. Surf. Sci. 20, 326–334 (1970)

    Google Scholar 

  27. Good, R.J., Kvikstad, J.A., Bailey, W.O.: Hysteresis of contact angles: the effect of elongation and roughness. Appl. Polym. Symp. 16, 153–164 (1971)

    Google Scholar 

  28. Granick, S., Jiang, S., Chen, Q.: Janus particles. Phys. Today 62, 68–69 (2009)

    Article  Google Scholar 

  29. Green, A.E., Naghdi, P.M., Wainwright, W.L.: A general theory of a Cosseart surface. Arch. Ration. Mech. Anal. 20, 287–308 (1965)

    Article  Google Scholar 

  30. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  Google Scholar 

  31. Gurtin, M.E., Murdoch, A.I.: Addenda to our paper a continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 389–390 (1975)

    Article  Google Scholar 

  32. Gurtin, M.E., Williams, W.O.: An axiomatic foundation for continuum thermodynamics. Arch. Ration. Mech. Anal. 26, 83–117 (1967)

    Article  Google Scholar 

  33. Haiss, W.: Surface stress of clean and adsorbate-covered solids. Rep. Prog. Phys. 64, 591–648 (2001)

    Article  CAS  Google Scholar 

  34. Helfrich, W.: Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C: Biosci. 28, 693–703 (1973)

    CAS  Google Scholar 

  35. Helfrich, W.: Blocked lipid exchange in bilayers and its possible influence on the shape of vesicles. Z. Naturforsch. C: Biosci. 29, 510–515 (1974)

    CAS  Google Scholar 

  36. Hu, C.: Equilibrium of an microemulsion that coexists with oil or brine. Soc. Petrol. Eng. J. 23, 829–847 (1983)

    Google Scholar 

  37. Ibach, H.: The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surf. Sci. Rep. 29, 195–263 (1997)

    Article  Google Scholar 

  38. Janmey, P.A., Kinnunen, P.K.J.: Biophysical properties of lipids and dynamic membranes. Trends Cell Biol. 16, 538–548 (2006)

    Article  CAS  Google Scholar 

  39. Kawabata, Y., Seto, H., Nagao, M., Takeda, T.: Pressure effects on bending elasticities of surfactant monolayers in a ternary microemulsion composed of aerosol-OT/D\(_{2}\)O/decane. J. Chem. Phys. 127, 044705-1–044705-9 (2007)

    Google Scholar 

  40. Kaufmann, T., Gokmen, M.T., Rinnen, S., Arlinghaus, H.F., Prez, F.D., Ravoo, B.J.: Bifunctional Janus beads made by “sandwich” microcontact printing using click chemistry. J. Mater. Chem. 22, 6190–6199 (2012)

    Google Scholar 

  41. Kramer, I.R.: Influence of the surface layer on the plastic flow. Deformation of aluminium single crystals. Trans. Met. Soc. AIME 233, 1462–1467 (1965)

    Google Scholar 

  42. Krishtal, M.A.: Effect of surface-active melts on the structure and properties of metals. Mater. Sci. 24, 325–329 (1988)

    Google Scholar 

  43. Krishtal, M.A., Borgardt, A.A., Katsman, A.V., Loshkarev, P.V.: On the origin and development of the dislocation structure under diffusion interaction. Phys. Chem. Mech. Mater. 5, 15–20 (1988) (in Russian)

    Google Scholar 

  44. Krishtal, M.A., Borgardt, A.A., Loshkarev, P.V.: Acoustic emission during interaction between iron and its alloys and surface-active melts. Dokl. Acad. Sci. USSR 267, 626–629 (1982) (in Russian)

    Google Scholar 

  45. Krishtal, M.A., Borgardt, A.A., Loshkarev, P.V.: Formation of dislocations and acoustic emission during interaction of ferro-alloys with surface-active melts. Phys. Met. Metall. Sci. 56, 587–592 (1983) (in Russian)

    Google Scholar 

  46. Krishtal, M.A., Loshkarev, P.V., Borgardt, A.A.: On conditions of appearance of nucleating crack during liquid-metal brittleness. In: Bekrenev, A.N. (ed.) Mechanisms of Dynamic Deformation of Metals, pp. 131–134. Kuibyshev Polytechnical Institute Press, Kuibyshev (1986) (in Russian)

    Google Scholar 

  47. Kurtisovski, E., Taulier, N., Ober, R., Waks, M., Urbach, V.: Molecular origin of model membrane bending rigidity. Phys. Rev. Lett. 98, 258103-1–258103-4 (2007)

    Google Scholar 

  48. Laplace, P.S.: Mécanique céleste, Supplément au X livre. Sur l’action capillaire. Courcier, Paris (1805)

    Google Scholar 

  49. Linford, R.G.: Surface thermodynamics of solids. Solid State Surf. Sci. 2, 1–152 (1973)

    CAS  Google Scholar 

  50. Ljunggren, S., Ericksson, J.C., Kralchevsky, P.A.: Minimization of the free energy of arbitrary curved interfaces. J. Colloid Interface Sci. 191, 424–441 (1997)

    Article  CAS  Google Scholar 

  51. Martínez, H., Chacón, E., Tarazona, P., Bresme, F.: The intrinsic interfacial structure of ionic surfactant monolayers at water-oil and water-vapour interfaces. Proc. R. Soc. A 467, 1939–1958 (2011)

    Article  Google Scholar 

  52. Mehta, S.K., Kaur, G.: Microemulsions: thermodynamic and dynamic properties. In: Tadashi, M. (ed.) Thermodynamics, pp. 381–406. InTech, New York (2011)

    Google Scholar 

  53. Milevsky, L.S., Smolsky, I.L.: Change in the mobility of dislocations during migration to a surface in a crystal with high Peierls barrier. Phys. Solid (Fizika Tverdogo Tela) 16, 1028–1031 (1974) (in Russian)

    Google Scholar 

  54. Milevsky, L.S., Smolsky, I.L.: Mobility of dislocations generated by internal sources in crystals with high Peierls barrier. In: Startsev, V.I. (ed.) Dynamics of Dislocations, pp. 30–36. Naukova Dumka, Kiev (1975) (in Russian)

    Google Scholar 

  55. Miller, C.A.: Interfacial bending effects and interfacial tensions in microemulsions. J. Dispersion Sci. Technol. 6, 159–173 (1985)

    Google Scholar 

  56. Miller, C.A., Neogi, P.: Thermodynamics of microemulsions: combined effects of dispersion entropy of drops and bending energy of surfactant films. AIChE J. 26, 212–220 (1980)

    Article  CAS  Google Scholar 

  57. Miller, C.A., Neogi, P.: Interfacial Phenomena. Equilibrium and Dynamic Effects, 2nd edn. CRC Press, Boca Raton (2008)

    Google Scholar 

  58. Mironova, M.L., Botvinkin, O.K.: The role of surface tension in arising of stresses under skeletonization of two-phase natroborosilicate glasses. In: Yeremenko, V.N. (ed.) Physical Chemistry of Surface Phenomena under High Temperatures, pp. 226–230. Naukova Dumka, Kiev (1971) (in Russian)

    Google Scholar 

  59. Moeckel, G.P.: Thermodynamics of an interface. Arch. Ration. Mech. Anal. 57, 255–280 (1975)

    Article  Google Scholar 

  60. Monkenbusch, M., Holderer, O., Frielinghaus, H., Byelov, D., Allgaier, J., Richter, D.: Bending moduli of microemulsions; comparison of results from small angle neutron scattering and neutron spin-echo spectroscopy. J. Phys.: Condens. Matter 17, S2903–S2909 (2005)

    Google Scholar 

  61. Morita, M., Koga, T., Otsuka, H., Takahara, A.: Macroscopic-wetting anisotropy on the line-patterned surface of fluoroalkylsilane monolayers. Langmuir 21, 911–918 (2005)

    Article  CAS  Google Scholar 

  62. Murdoch, A.I.: Thermomechanical theory of elastic-material interfaces. Q. J. Mech. Appl. Math. 29, 245–275 (1976)

    Article  Google Scholar 

  63. Murr, L.E.: Interfacial Phenomena in Metals and Alloys. Addison-Wesley, London (1975)

    Google Scholar 

  64. Müller, P., Saúl, A.: Elastic effects on surface physics. Surf. Sci. Rep. 54, 157–258 (2004)

    Google Scholar 

  65. Naghdi, P.M.: The theory of plates and shells. In: Flügge, S. (ed.) Handbuch der Physik, vol. VIa/2, pp. 425–640. Springer, Heidelberg (1972)

    Google Scholar 

  66. Naidich, Y.V., Kolesnichenko, G.A., Voitovich, R.P., Kostyuk, B.D., Gavrilyuk, G.I.: Wetting of inhomogeneous solid surfaces by metal melts. In: Naidich, Yu.V. (ed.) Capillary and Adhesive Properties of Melts, pp. 18–25. Naukova Dumka, Kiev (1987) (in Russian)

    Google Scholar 

  67. Naidich, Y.V., Voitovich, R.P., Kolesnichenko, G.A., Kostyuk, B.D.: Wetting of inhomogeneous solid surfaces by metal melts for the systems with an ordered arrangement parts of different kinds. Phys. Chem. Mech. Surf. 2, 126–132 (1988) (in Russian)

    Google Scholar 

  68. Neuhaus, S., Spencer, N.D., Padeste, C.: Anisotropic wetting of microstructured surfaces as a function of surface chemistry. Appl. Mater. Interfaces 4, 123–130 (2012)

    Article  CAS  Google Scholar 

  69. Neumann, F.E.: Vorlesungen über die Theorie der Kapillarität. Teubner, Leipzig (1894)

    Google Scholar 

  70. Ondarçuhu, T., Fabre, P., Raphaël, E., Veyssié, M.: Specific properties of amphiphilic particles at fluid interfaces. J. Phys. (Paris) 51, 1527–1536 (1990)

    Article  Google Scholar 

  71. Park, S.-G., Moon, J.H., Jeon, H.C., Yang, S.-M.: Anisotropic wetting and superhydrophobicity on holographically featured 3D nanostructured surfaces. Soft Matter 8, 4567–4570 (2012)

    Article  Google Scholar 

  72. Paterson, A., Fermigier, M.: Wetting of heterogeneous surfaces: influence of defect interactions. Phys. Fluids 9, 2210–2216 (1997)

    Article  CAS  Google Scholar 

  73. Podstrigach, Y.S., Povstenko Y.Z.: Introduction to the Mechanics of Surface Phenomena in Deformable Solids. Naukova Dumka, Kiev (1985) (in Russian)

    Google Scholar 

  74. Pouchelon, A., Chatenay, D., Meunier, J., Langevin, D.: Origin of low interface tensions in systems involving microemulsion phases. J. Colloid Interface Sci. 82, 418–422 (1981)

    Article  CAS  Google Scholar 

  75. Povstenko, Y.Z.: The momentum balance equation at the line of contact of three media. Dokl. Acad. Sci. Ukr. SSR, Ser. A 10, 45–47 (1980) (in Russian)

    Google Scholar 

  76. Povstenko, Y.Z.: Generalized Laplace and Young conditions of mechanical contact. Math. Methods Phys.-Mech. Fields 16, 30–32 (1982) (in Russian)

    Google Scholar 

  77. Povstenko, Y.Z.: The general balance equation at an interface between two media and at a line dividing three media. Math. Methods Phys.-Mech. Fields 17, 41–43 (1983) (in Russian)

    Google Scholar 

  78. Povstenko, Y.Z.: Dislocations and disclinations in a two-dimwensional continuum. Theory of incompaticle strains. Dokl. Acad. Sci. Ukr. SSR, Ser. A 4, 35–37 (1985) (in Russian)

    Google Scholar 

  79. Povstenko, Y.Z.: Dislocations and disclinations in a two-dimwensional continuum. Connection with non-Riemannian geometry. Dokl. Acad. Sci. Ukr. SSR, Ser. A 6, 45–48 (1985) (in Russian)

    Google Scholar 

  80. Povstenko, Y.Z.: Continuous theory of dislocations and disclinations in a two-dimensional medium. J. Appl. Math. Mech. 49, 782–786 (1985) (in Russian)

    Google Scholar 

  81. Povstenko, Y.Z.: Analysis of motor fields in Cosserat continua of two and one dimensions and its applications. Z. angew. Math. Mech. 66, 505–507 (1986)

    Article  Google Scholar 

  82. Povstenko, Y.Z.: The mathematical theory of derects in a Cosserat continuum. Math. Methods Phys.-Mech. Fields 27, 34–40 (1988) (English Transl.: J. Math. Sci. 62, 2524–2530 (1992))

    Google Scholar 

  83. Povstenko, Y.Z.: Anisotropy of wetting and spreading. Math. Methods Phys.-Mech. Fields 31, 8–16 (1990) (English Transl.: J. Math. Sci. 64, 890–898 (1993))

    Google Scholar 

  84. Povstenko, Y.Z.: Generalizations of Laplace and Young equations involving couples. J. Colloid Interafce Sci. 144, 497–506 (1991)

    Google Scholar 

  85. Povstenko, Y.Z.: Connection between non-metric differential geometry and mathematical theory of imperfections. Int. J. Eng. Sci. 29, 37–46 (1991)

    Google Scholar 

  86. Povstenko, Y.Z.: Theoretical investigation of phenomena caused by heterogeneous surface tension in solids. J. Mech. Phys. Solids 41, 1499–1514 (1993)

    Article  Google Scholar 

  87. Povstenko, Y.: Stresses due to heterogeneous surface tension in solids. Proc. Appl. Math. Mech. 1, 193–194 (2002)

    Google Scholar 

  88. Raphaël, E.: Étalement de gouttes sur une surface bigarrée. C. R. Acad. Sci. Paris Sér. II 306, 751–754 (1988)

    Google Scholar 

  89. Raphaël, E.: Équilibre d’un "Grain Janus" á une interface eau/huile. C. R. Acad. Sci. Paris Sér II 307, 9–12 (1988)

    Google Scholar 

  90. Reculusa, S., Mingotaud, C., Duguet, E., Ravaine, S.: Dissymmetrical nanoparticles. In: Contescu, C.I., Putuyera, K. (eds.) Dekker Encyclopedia of Nanoscience and Nanotechnology, 2nd edn, pp. 1093–1101. CRC Press, Boca Raton (2008)

    Google Scholar 

  91. Rekvig, L., Hafskjold, B., Smit, B.: Simulating the effect of surfactant structure on bending moduli of monolayers. J. Chem. Phys. 120, 4897–4905 (2004)

    Article  CAS  Google Scholar 

  92. Rostoker, W., McCaughey, J.M., Markus H.: Embrittlement by Liquid Metals. Reinhold Publishing Corporation, New York (1960)

    Google Scholar 

  93. Rubin, M.B.: Cosserat Theories: Shells, Rods and Points. Springer, New York (2000)

    Google Scholar 

  94. Ruckenstein, E.: An explanation for the unusual phase behaviour of microemulsions. Chem. Phys. Lett. 98, 573–576 (1983)

    Google Scholar 

  95. Rusanov, A.I.: On the theory of wetting of solids. 5. Reduction of deformation effects to linear tension. Colloid J. 39, 704–710 (1977) (in Russian)

    Google Scholar 

  96. Rusanov, A.I.: Phasengleichgewichte und Grenzflächenerscheinungen. Academie-Verlag, Berlin (1978)

    Google Scholar 

  97. Rusanov, A.I.: Surface thermodynamics revisited. Surf. Sci. Rep. 58, 111–239 (2005)

    Article  CAS  Google Scholar 

  98. Sagis, L.M.C.: Generalized curvature expansion for the surface internal energy. Physica A246, 591–608 (1997)

    Google Scholar 

  99. Shcherbakov, L.M., Ryazantsev, P.P.: About influence of energy of wetting perimeter on edge conditions. In: Deryagin, B.V. (ed.) Research in Surface Forces, pp. 26–28. Nauka, Moscow (1964) (English Transl.: Consult. Bureau, New York (1966))

    Google Scholar 

  100. Slattery, J.C., Sagis., L, Oh, E.-S.: Interfacial Transport Phenomena, 2nd edn. Springer, New York (2007)

    Google Scholar 

  101. Sneddon, I.N.: Fourier Transforms. McGraw-Hill, New York (1951)

    Google Scholar 

  102. Surabhi, K., Op, K., Atul, N., Arun, G.: Microemulsions: developmental aspects. Res. J. Pharm. Biol. Chem. Sci. 1, 683–706 (2010)

    Google Scholar 

  103. Sun C.Q.: Thermomechanical behavior of low-dimensional systems: the local bond average approach. Prog. Mater. Sci. 54, 179–307 (2009)

    Google Scholar 

  104. Swain, P.S., Lipowsky, R.: Contact angles on heterogeneous surfaces: a new look at Cassie’s and Wenzel’s laws. Langmuir 14, 6772–6780 (1998)

    Article  CAS  Google Scholar 

  105. Timoshenko, V., Bochenkov, V., Traskine, V., Protsenko, P.: Anisotropy of wetting and spreading in binary Cu-Pb metallic system: experimental facts and MD modeling. J. Mater. Eng. Perform. 21, 575–584 (2012)

    Article  CAS  Google Scholar 

  106. Tress, H.J.: Some distinctive contours worn on alumina-silica refractory faces by different molten glasses: surface tension and the mechanism of refractory attack. J. Soc. Glass Technol. 38, 89T–100T (1954)

    Google Scholar 

  107. Veselovsky, V.S., Pertsov, V.N.: Attachment of bubbles to solid surfaces. Zhurn. Fiz. Khim. (J. Phys. Chem.) 8, 245–259 (1936) (in Russian)

    Google Scholar 

  108. Walther, A., Müller, A.H.E.: Janus particles. Soft Matter 4, 663–668 (2008)

    Article  CAS  Google Scholar 

  109. Wang, J., Huang, Z.P., Duan, H.L., Yu, S.W., Feng, X.Q., Wang, G.F., Zhang, W.X., Wang, T.J.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24, 51–82 (2011)

    Google Scholar 

  110. Wang, J., Karihaloo, B.L., Duan, H.L., Huang, Z.P.: Importance of surface/interface effect to properties of materials at nano-scale. In: Sadowski, T. (ed.) IUTAM Symposium on Multiscale Modelling of Damage and Fracture Processes in Composite Materials, pp. 227–234. Springer, Dordrecht, The Netherlands (2006)

    Google Scholar 

  111. Wu, J., Zhang, M., Wang, X., Li, S., Wen, W.: A simple approach for local contact angle determination on a heterogeneous surface. Langmuir 27, 2705–2708 (2011)

    Google Scholar 

  112. Xia, D., Brueck, S.R.J.: Strongly anisotropic wetting on one-dimensional nanopatterned surfaces. Nano Lett. 8, 2819–2824 (2008)

    Article  CAS  Google Scholar 

  113. Xia, D., He, X., Jiang, Y.-B., López, G.P., Brueck, S.R.J.: Tailoring anisotropic wetting properties on submicrometer-scale periodic grooved surfaces. Langmuir 26, 2700–2706 (2010)

    Article  CAS  Google Scholar 

  114. Xia, D., Johnson, L.M., López, G.P.: Anisotropic wetting surfaces with one-dimensional and directional structures: fabrication approaches, wetting properties and potential applications. Adv. Mater. 24, 1287–1302 (2012)

    Article  CAS  Google Scholar 

  115. Young, T.: An essay on the cohesion of fluids. Phil. Trans. Roy. Soc. 94, 65–87 (1805)

    Google Scholar 

  116. Zadumkin, S.N., Kumykov, V.K., Khokonov, K.V.: Surface tension of some high-melting solid metals. In: Tavadze, F.N. (ed.) Physical Chemistry of Melt Surface, pp. 194–200. Mecniereba, Tbilisi (1977) (in Russian)

    Google Scholar 

  117. Zhao, Y., Lu, Q., Li, M., Li, X.: Anisotropic wetting characteristics on submicrometer-scale periodic grooved surface. Langmuir 23, 6212–6217 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy Povstenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Povstenko, Y. (2013). Mathematical Modeling of Phenomena Caused by Surface Stresses in Solids. In: Altenbach, H., Morozov, N. (eds) Surface Effects in Solid Mechanics. Advanced Structured Materials, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35783-1_11

Download citation

Publish with us

Policies and ethics