Skip to main content

Modeling and Rendering Subsurface Scattering Using Diffusion Equations

  • Chapter
  • First Online:
  • 665 Accesses

Abstract

For modeling and rendering of heterogeneous translucent materials, this chapter presents techniques that enable acquisition from measured samples, interactive editing of material attributes, and real-time rendering. The materials are assumed to be optically dense such that multiple scattering can be approximated by a diffusion process described by the diffusion equation. For modeling heterogeneous materials, the inverse diffusion algorithm is presented for acquiring material properties from appearance measurements. This modeling algorithm incorporates a regularizer to handle the ill-conditioning of the inverse problem, an adjoint method to dramatically reduce the computational cost, and a hierarchical GPU implementation for further speedup. Rendering an object with known material properties is done by the polygrid diffusion algorithm, which solves the diffusion equation with a boundary condition defined by the given illumination environment. This rendering technique is based on representation of an object by a polygrid, a grid with regular connectivity and an irregular shape, which facilitates solution of the diffusion equation in arbitrary volumes. Because of the regular connectivity, this rendering algorithm can be implemented on the GPU for real-time performance. These techniques are demonstrated by capturing materials from physical samples and performing real-time rendering and editing with these materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Goesele, M., Lensch, H.P.A., Lang, J., Fuchs, C., Seidel, H.-P.: DISCO: acquisition of translucent objects. ACM Trans. Graph. 23(3), 835–844 (2004)

    Article  Google Scholar 

  2. Tong, X., Wang, J., Lin, S., Guo, B., Shum, H.-Y.: Modeling and rendering of quasi-homogeneous materials. ACM Trans. Graph. 24(3), 1054–1061 (2005)

    Article  Google Scholar 

  3. Peers, P., vom Berge, K., Matusik, W., Ramamoorthi, R., Lawrence, J., Rusinkiewicz, S., Dutré, P.: A compact factored representation of heterogeneous subsurface scattering. ACM Trans. Graph. 25(3), 746–753 (2006)

    Article  Google Scholar 

  4. Ishimaru, A.: Wave Propagation and Scattering in Random Media. IEEE Press Series on Electromagnetic Wave Theory (1999)

    Google Scholar 

  5. Schweiger, M., Arridge, S., Hiraoka, M., Delpy, D.: The finite element method for the propagation of light in scattering media: boundary and source conditions. Med. Phys. 22, 1779–1792 (1995)

    Article  Google Scholar 

  6. Boas, D., Brooks, D., DiMarzio, C., Kilmer, M., Gauette, R., Zhang, Q.: Imaging the body with diffuse optical tomography. IEEE Signal Process. Mag. 18(6), 57–75 (2001)

    Article  Google Scholar 

  7. Stam, J.: Multiple scattering as a diffusion process. In: Eur. Rendering Workshop, June 1995, pp. 41–50 (1995)

    Google Scholar 

  8. Jensen, H.W., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. In: SIGGRAPH pp. 511–518 (2001)

    Google Scholar 

  9. Arridge, S., Lionheart, B.: Non-uniqueness in diffusion-based optical tomography. Opt. Lett. 23, 882–884 (1998)

    Article  Google Scholar 

  10. Lions, J.-L.: Optimal Control Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  11. Gibson, A., Hebden, J., Arridge, S.: Recent advances in diffuse optical imaging. Phys. Med. Biol. 50, R1–R43 (2005)

    Article  Google Scholar 

  12. Jensen, H.W., Buhler, J.: A rapid hierarchical rendering technique for translucent materials. ACM Trans. Graph. 21(3), 576–581 (2002)

    Article  Google Scholar 

  13. Carr, N.A., Hall, J.D., Hart, J.C.: GPU algorithms for radiosity and subsurface scattering. In: Proc. Graphics Hardware, pp. 51–59 (2003)

    Google Scholar 

  14. Mertens, T., Kautz, J., Bekaert, P., Seidel, H.-P., Reeth, F.V.: Interactive rendering of translucent deformable objects. In: The Eurographics Symposium on Rendering, pp. 130–140 (2003)

    Google Scholar 

  15. Lensch, H.P.A., Goesele, M., Bekaert, P., Magnor, J.K.M.A., Lang, J., Seidel, H.-P.: Interactive rendering of translucent objects. ACM Trans. Graph. 22(2), 195–205 (2003)

    Article  Google Scholar 

  16. Haber, T., Mertens, T., Bekaert, P., Van Reeth, F.: A computational approach to simulate light diffusion in arbitrarily shaped objects. In: Proc. Graphics Interface, pp. 79–85 (2005)

    Google Scholar 

  17. Debevec, P., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W., Sagar, M.: Acquiring the reflectance field of a human face. In: Proc. SIGGRAPH 2000, pp. 145–156 (2000)

    Google Scholar 

  18. Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: ACM SIGGRAPH, pp. 369–378 (1997)

    Chapter  Google Scholar 

  19. Zhang, R., Tsai, P.-S., Cryer, J.E., Shah, M.: Shape from shading: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 21, 690–706 (1999)

    Article  Google Scholar 

  20. Press, W.H., et al.: Numerical Recipes in C, 2nd edn. (1992)

    MATH  Google Scholar 

  21. Giles, M.B., Pierce, N.A.: An introduction to the adjoint approach to design. In: ERCOFTAC Workshop on Adjoint Methods, Touluse, France (1999)

    Google Scholar 

  22. McNamara, A., Treuille, A., Popović, Z., Stam, J.: Fluid control using the adjoint method. ACM Trans. Graph. 23(3), 449–456 (2004)

    Article  Google Scholar 

  23. Chen, Y., Tong, X., Wang, J., Lin, S., Guo, B., Shum, H.-Y.: Shell texture functions. ACM Trans. Graph. 23(3), 343–353 (2004)

    Article  Google Scholar 

  24. Porumbescu, S.D., Budge, B., Feng, L., Joy, K.I.: Shell maps. ACM Trans. Graph. 24(3), 626–633 (2005)

    Article  Google Scholar 

  25. Ju, T., Schaefer, S., Warren, J.: Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24(3), 561–566 (2005)

    Article  Google Scholar 

  26. Sloan, P.-P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In: SIGGRAPH ’02: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 527–536. ACM, New York (2002)

    Chapter  Google Scholar 

  27. Ng, R., Ramamoorthi, R., Hanrahan, P.: All-frequency shadows using non-linear wavelet lighting approximation. ACM Trans. Graph. 22(3), 376–381 (2003)

    Article  Google Scholar 

  28. Tarini, M., Hormann, K., Cignoni, P., Montani, C.: PolyCube-maps. ACM Trans. Graph. 23(3), 853–860 (2004)

    Article  Google Scholar 

  29. Kraevoy, V., Sheffer, A.: Cross-parameterization and compatible remeshing of 3d models. ACM Trans. Graph. 23(3), 861–869 (2004)

    Article  Google Scholar 

  30. Schreiner, J., Asirvatham, A., Praun, E., Hoppe, H.: Inter-surface mapping. ACM Trans. Graph. 23(3), 870–877 (2004)

    Article  Google Scholar 

  31. Turk, G.: Re-tiling polygonal surfaces, SIGGRAPH 26(2), 55–64 (1992)

    Article  Google Scholar 

  32. Gu, X., Yau, S.-T.: Global conformal surface parameterization. In: Proc. Symp. Geometry Processing, pp. 127–137 (2003)

    Google Scholar 

  33. Krüger, J., Westermann, R.: Linear algebra operators for GPU implementation of numerical algorithms. ACM Trans. Graph. 22(3), 908–916 (2003)

    Article  Google Scholar 

  34. Bolz, J., Farmer, I., Grinspun, E., Schröder, P.: Sparse matrix solvers on the GPU: conjugate gradients and multigrid. ACM Trans. Graph. 22(3), 917–924 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dong, Y., Lin, S., Guo, B. (2013). Modeling and Rendering Subsurface Scattering Using Diffusion Equations. In: Material Appearance Modeling: A Data-Coherent Approach. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35777-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35777-0_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35776-3

  • Online ISBN: 978-3-642-35777-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics