Skip to main content

Modeling Subsurface Light Transport with the Kernel Nyström Method

  • Chapter
  • First Online:
Material Appearance Modeling: A Data-Coherent Approach
  • 642 Accesses

Abstract

Chapter 6 presents a kernel Nyström method for reconstructing the light transport matrix, which models light transport from each light source to each camera pixel, from a relatively small number of acquired images. This work is based on the generalized Nyström method for low rank matrices. The light transport kernel is introduced and incorporated into the Nyström method to exploit the nonlinear coherence of the light transport matrix data. An adaptive scheme is also developed for efficiently capturing the sparsely sampled images from the scene. Experiments indicate that the kernel Nyström method can achieve good reconstruction of the light transport matrix with a few hundred images and produce high quality relighting results. The kernel Nyström method is effective for modeling scenes with complex lighting effects and occlusions which have been challenging for existing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As we will show, it is not necessary to specify what these two point sets are.

References

  1. Ng, R., Ramamoorthi, R., Hanrahan, P.: All-frequency shadows using non-linear wavelet lighting approximation. ACM Trans. Graph. 22(3), 376–381 (2003)

    Article  Google Scholar 

  2. Peers, P., Mahajan, D.K., Lamond, B., Ghosh, A., Matusik, W., Ramamoorthi, R., Debevec, P.: Compressive light transport sensing. ACM Trans. Graph. 28(1), 3–1318 (2009)

    Article  Google Scholar 

  3. Debevec, P., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W., Sagar, M.: Acquiring the reflectance field of a human face. In: Proc. SIGGRAPH 2000, pp. 145–156 (2000)

    Google Scholar 

  4. Wenger, A., Gardner, A., Tchou, C., Unger, J., Hawkins, T., Debevec, P.: Performance relighting and reflectance transformation with time-multiplexed illumination. ACM Trans. Graph. 24(3), 756–764 (2005)

    Article  Google Scholar 

  5. Zongker, D.E., Werner, D.M., Curless, B., Salesin, D.H.: Environment matting and compositing. In: Proceedings of SIGGRAPH 99. Computer Graphics Proceedings, Annual Conference Series, pp. 205–214 (1999)

    Chapter  Google Scholar 

  6. Matusik, W., Loper, M., Pfister, H.: Progressively-refined reflectance functions from natural illumination. In: Rendering Techniques 2004: 15th Eurographics Workshop on Rendering, pp. 299–308 (2004)

    Google Scholar 

  7. Peers, P., Dutré, P.: Inferring reflectance functions from wavelet noise. In: Rendering Techniques 2005: 16th Eurographics Workshop on Rendering, pp. 173–182 (2005)

    Google Scholar 

  8. Williams, C., Seeger, M.: Using the Nyström method to speed up kernel machines. Adv. Neural Inf. Process. Syst. 13, 682–688 (2000)

    Google Scholar 

  9. Masselus, V., Peers, P., Dutré, P., Willems, Y.D.: Smooth reconstruction and compact representation of reflectance functions for image-based relighting. In: Rendering Techniques 2004: 15th Eurographics Workshop on Rendering, pp. 287–298 (2004)

    Google Scholar 

  10. Mahajan, D., Shlizerman, I.K., Ramamoorthi, R., Belhumeur, P.: A theory of locally low dimensional light transport. ACM Trans. Graph. 26(3), 62–16210 (2007)

    Article  Google Scholar 

  11. Levoy, M., Hanrahan, P.M.: Light field rendering. In: Proceedings of SIGGRAPH 96. Computer Graphics Proceedings, Annual Conference Series, pp. 31–42 (1996)

    Chapter  Google Scholar 

  12. Garg, G., Talvala, E.-V., Levoy, M., Lensch, H.P.A.: Symmetric photography: exploiting data-sparseness in reflectance fields. In: Eurographics Workshop/Symposium on Rendering, Nicosia, Cyprus, pp. 251–262. Eurographics Association Geneva (2006)

    Google Scholar 

  13. Lin, Z., Wong, T.-T., Shum, H.-Y.: Relighting with the reflected irradiance field: Representation, sampling and reconstruction. Int. J. Comput. Vis. 49(2)

    Google Scholar 

  14. Matusik, W., Pfister, H., Ngan, A., Beardsley, P., Ziegler, R., McMillan, L.: Image-based 3D photography using opacity hulls. ACM Trans. Graph. 21(3), 427–437 (2002)

    Article  Google Scholar 

  15. Masselus, V., Peers, P., Dutré, P., Willems, Y.D.: Relighting with 4d incident light fields. ACM Trans. Graph. 22(3), 613–620 (2003)

    Article  Google Scholar 

  16. Sen, P., Chen, B., Garg, G., Marschner, S.R., Horowitz, M., Levoy, M., Lensch, H.P.A.: Dual photography. ACM Trans. Graph. 24(3), 745–755 (2005)

    Article  Google Scholar 

  17. Hawkins, T., Einarsson, P., Debevec, P.: A dual light stage. In: Rendering Techniques 2005: 16th Eurographics Workshop on Rendering, pp. 91–98 (2005)

    Google Scholar 

  18. Chuang, Y.-Y., Zongker, D.E., Hindorff, J., Curless, B., Salesin, D.H., Szeliski, R.: Environment matting extensions: Towards higher accuracy and real-time capture. In: Proceedings of ACM SIGGRAPH 2000, July 2000. Computer Graphics Proceedings, Annual Conference Series, pp. 121–130 (2000)

    Google Scholar 

  19. Fuchs, M., Blanz, V., Lensch, H.P.A., Seidel, H.-P.: Adaptive sampling of reflectance fields. ACM Trans. Graph. 26(2), 10 (2007)

    Article  Google Scholar 

  20. Platt, J.C.: Fastmap, metricmap, and landmark mds are all MNyström algorithms. In: 10th International Workshop on Artificial Intelligence and Statistics, pp. 261–268 (2005)

    Google Scholar 

  21. An, X., Pellacini, F.: AppProp: all-pairs appearance-space edit propagation. ACM Trans. Graph. 27(3), 40 (2008)

    Article  Google Scholar 

  22. Hašan, M., Pellacini, F., Bala, K.: Matrix row-column sampling for the many-light problem. ACM Trans. Graph. 26(3), 26 (2007)

    Article  Google Scholar 

  23. Hašan, M., Velazquez-Armendariz, E., Pellacini, F., Bala, K.: Tensor clustering for rendering many-light animations. Comput. Graph. Forum 27(4), 1105–1114 (2008)

    Article  Google Scholar 

  24. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press Cambridge (2000)

    Book  Google Scholar 

  25. Fazel, M.: Matrix rank minimization with applications. PhD thesis, Stanford University (2002)

    Google Scholar 

  26. Press, W.H., et al.: Numerical Recipes in C, 2nd edn. (1992)

    MATH  Google Scholar 

  27. Goesele, M., Lensch, H.P.A., Lang, J., Fuchs, C., Seidel, H.-P.: DISCO: acquisition of translucent objects. ACM Trans. Graph. 23(3), 835–844 (2004)

    Article  Google Scholar 

  28. Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: ACM SIGGRAPH, pp. 369–378 (1997)

    Chapter  Google Scholar 

  29. Peers, P., vom Berge, K., Matusik, W., Ramamoorthi, R., Lawrence, J., Rusinkiewicz, S., Dutré, P.: A compact factored representation of heterogeneous subsurface scattering. ACM Trans. Graph. 25(3), 746–753 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dong, Y., Lin, S., Guo, B. (2013). Modeling Subsurface Light Transport with the Kernel Nyström Method. In: Material Appearance Modeling: A Data-Coherent Approach. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35777-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35777-0_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35776-3

  • Online ISBN: 978-3-642-35777-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics