Skip to main content

Ischemia and Reperfusion Injury in Bone

  • Chapter
  • First Online:
Osteonecrosis

Abstract

Bone cells may be killed in a variety of ways, from radiation to poison. But the clinical phenomenon that has become most identified with the term “osteonecrosis” is associated with ischemia. Ischemic osteonecrosis (ION) is the preferred term, although clinicians traditionally use AVN (avascular necrosis) in spite of the fact that the absence of vessels has never been histologically confirmed (ischemic vessels are still vessels just as a dead body is still a body). It is generally agreed that ION results from two main causes of ischemia: (1) hypercoagulation that is associated with a wide range of diseases, leading to the name of this category as “idiopathic” ION, and (2) physical damage to bone blood vessels resulting from impact—high energy or compression—known as “traumatic” ION. This review is divided into three sections: (a) idiopathic ION, (b) traumatic ION and reperfusion, and (c) intravital microscopic investigation of both.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kerachian MA, Harvey EJ, Cournoyer D, Chow TYK, Séguin C. Avascular necrosis of the femoral head: vascular hypothesis. Endothelium. 2006;13:237–44.

    Article  PubMed  Google Scholar 

  2. Glueck CJ, Freiberg RA, Boppana S, Wang P. Thrombophilia, hypofibrinolysis, the eNOS T-786C polymorphism, and multifocal osteonecrosis. J Bone Joint Surg. 2008;90:2220–9.

    Article  PubMed  Google Scholar 

  3. Lykissas MG, Gelalis ID, Kostas-Agnatis IP, Vozonelos G, Korompilas AV. The role of hypercoagulability in the development of osteonecrosis of the femoral head. Orthop Rev. 2012;4:73–7.

    Article  Google Scholar 

  4. Jones JP. Concepts of etiology and early pathogenesis of osteonecrosis. In: Schafer M, editor. Instructional course lectures. Chicago: American Academy of Orthopaedic Surgeons; 1994. p. 499–512.

    Google Scholar 

  5. Bose VC, Baruah BD. Resurfacing arthroplasty of the hip for avascular necrosis of the femoral head: a minimum follow-up of four years. J Bone Joint Surg. 2010;92B:922–8.

    Article  Google Scholar 

  6. Steffen RT, Athanasou NA, Gil HS, Murray DW. Avascular necrosis associated with fracture of the femoral neck after hip resurfacing: histological assessment of femoral bone from retrieval specimens. J Bone Joint Surg. 2010;92B:787–93.

    Article  Google Scholar 

  7. Winet H. Blood flow in bone. In: Cowin S, editor. Bone mechanics handbook. Boca Raton: CRC Press; 2001. p. 21.21–7.

    Google Scholar 

  8. Kalhor M, Horowitz K, Gharehdaghi J, Beck M, Ganz R. Anatomic variations in femoral head circulation. Hip Int. 2012;22:307–12.

    Article  PubMed  Google Scholar 

  9. Grose AW, Gardner MJ, Sussman PS, Helfet DL, Lorich DG. The surgical anatomy of the blood supply to the femoral head: description of the anastomosis between the median femoral circumflex and inferior gluteal arteries at the hip. J Bone Joint Surg. 2008;90B:1298–303.

    Article  Google Scholar 

  10. Gautier E, Ganz K, Krügel N, Gill T, Gaz R. Anatomy of the medial femoral circumflex artery and its surgical implications. J Bone Joint Surg. 2000;82B:679–83.

    Article  Google Scholar 

  11. Crock HV. A revision of the anatomy of the arteries supplying the upper end of the human femur. J Anat. 1965;99:77–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Sevitt S, Thompson RG. The distribution and anastomoses of arteries supplying the head and neck of the femur. J Bone Joint Surg. 1965;47B:560–73.

    Google Scholar 

  13. Trueta J. The normal vascular anatomy of the human femoral head during growth. J Bone Joint Surg. 1957;39B:358–94.

    Google Scholar 

  14. Wertheimer LG, Lopes SL. Arterial supply of the femoral head. J Bone Joint Surg. 1971;53A:545–56.

    Google Scholar 

  15. Rhinelander FW. The normal microcirculation of diaphyseal cortex and its response to fracture. J Bone Joint Surg. 1968;50A:784–800.

    Google Scholar 

  16. Grundnes O, Gjerdet NR, Utvåg SE, Reikerås O. Vascular and structural changes in rat femora following nailing and intramedullary occlusion. J Orthop Res. 1998;16:293–9.

    Article  CAS  PubMed  Google Scholar 

  17. Shea JE, Hallows RK, Ricks S, Bloebaum RD. Microvascularization of the hypermineralized calcified fibrocartilage and cortical bone in the sheep proximal femur. Anat Rec. 2002;268:365–70.

    Article  PubMed  Google Scholar 

  18. Séguin C, Kassis J, Busque L, Bestawros A, Theodoropoulos J, Alonso M-L, Harvey EJ. Non-traumatic necrosis of bone (osteonecrosis) is associated with endothelial cell activation but not thrombophilia. Rheumatology. 2008;47:1151–5.

    Article  PubMed  Google Scholar 

  19. Craig LE, Spelman JP, Strandberg JD, Zink MC. Endothelial cells from diverse tissues exhibit differences in growth and morphology. Microvasc Res. 1998;55:65–76.

    Article  CAS  PubMed  Google Scholar 

  20. Kumar S, West DC, Ager A. Heterogeneity in endothelial cells from large vessels and microvessels. Different. 1987;36:57–70.

    Article  CAS  Google Scholar 

  21. Beilke MA. Vascular endothelium in immunology and infectious disease. Rev Infect Dis. 1989;11:273–83.

    Article  CAS  PubMed  Google Scholar 

  22. Page C, Rose M, Yacoub M, Pigott R. Antigenic heterogeneity of vascular endothelium. Am J Pathol. 1992;141:673–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Yano K, Gale D, Massberg S, Cheruvu PK, Monohan-Early P, Morgan ES, Haig D, von Andrian H, Dvorak AM, Aird WC. Phenotypic heterogeneity is an evolutionary conserved feature of the endothelium. Blood. 2007;109:613–5.

    Article  CAS  PubMed  Google Scholar 

  24. Rosenberg RD, Aird WC. Vascular bed-specific hemostasis and hypercoagulable states. N Engl J Med. 1999;340:1555–64.

    Article  CAS  PubMed  Google Scholar 

  25. Aird WC. Phenotypic heterogeneity of the endothelium I. Structure, function and mechanisms. Circ Res. 2007;100:158–73.

    Article  CAS  PubMed  Google Scholar 

  26. Edelberg JM, Christie PD, Rosenberg RD. Regulation of vascular bed-specific prothrombic potential. Circ Res. 2001;89:117–24.

    Article  CAS  PubMed  Google Scholar 

  27. Franscini N, Bachli EB, Blau N, Leikauf M-S, Schaffner A, Schoedon G. Gene expression profiling of inflamed human endothelial cells and influence of activated protein C. Circulation. 2004;110:2903–9.

    Article  CAS  PubMed  Google Scholar 

  28. Aird WC. Phenotypic heterogeneity of the endothelium II. Representative vascular beds. Circ Res. 2007;100:174–90.

    Article  CAS  PubMed  Google Scholar 

  29. Firner S, Onder L, Nindl V, Ludewig B. Tight control – decision-making during T cell-vascular endothelial cell interaction. Front Immunol. 2012;3:1–6.

    Article  Google Scholar 

  30. Rothermel AL, Wang Y, Schechner J, Mook-Kanamori B, Aird WC, Pober JS, Tellidides G, Johnson DR. Endothelial cells present antigens in vivo. BMC Immunol. 2004;5:1–15.

    Article  Google Scholar 

  31. Celik S, Shankar V, Rchter A, Hippe H-J, Akhavanpoor M, Bea F, Erbel C, Urban S, Blank N, Wambsgans N, et al. Proinflammatory and prothrombotic effects in human vascular endothelial cells of immune cell-derived LIGHT. Eur J Med Res. 2009;14:147–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Kish DD, Volokh N, Baldwin WMI, Fairchhild RL. Hapten application to the skin induces an inflammatory program directing hapten-primed effector CD8 T cell interaction with hapten-presenting endothelial cells. J Immunol. 2011;186:2117–26.

    Article  CAS  PubMed  Google Scholar 

  33. Niessen F, Schaffler F, Furlan-Freguia C, Pawlinski R, Bhattacharjee G, Chun J, Derian CK, Andrade-Gordon P, Rosen H, Ruf W. Dendritic cell PAR1-S1P3 signalling couples coagulation and inflammation. Nature. 2008;452:654–8.

    Article  CAS  PubMed  Google Scholar 

  34. Dauphinee SM, Karsan A. Lipopolysaccharide signaling in endothelial cells. Lab Invest. 2006;86:9–22.

    Article  CAS  PubMed  Google Scholar 

  35. Swan DJ, Kirby JA, Ali S. Vascular biology: the role of sphingosine 1-phosphate in both the resting state and inflammation. J Cell Mol Med. 2001;14:2211–22.

    Article  Google Scholar 

  36. Waeber C, Blondeau N, Salamone S. Vascular sphingosine-1-phosphate S1P1 and S1P3 receptors. Drug News Persp. 2004;17:365–82.

    Google Scholar 

  37. Feistritzer C, Riewald M. Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation. Blood. 2005;105:3178–84.

    Article  CAS  PubMed  Google Scholar 

  38. Okazaki S, Nishitani Y, Nagoya S, Kaya M, Yamashita T, Matsumoto H. Femoral head osteonecrosis can be caused by disruption of the systemic immune response via toll-like receptor 4 signalling pathway. Rheumatology. 2009;48:227–32.

    Article  CAS  PubMed  Google Scholar 

  39. Hunt BJ, Jurd K. Endothelial function in inflammation, sepsis, reperfusion and vasculitides. In: Halliday A, Hund BJ, Poston L, Schachter M, editors. An introduction to vascular biology. Cambridge: Cambridge University Press; 1998. p. 225–47.

    Google Scholar 

  40. Hsieh AS, Winet H, Bao JY, Glas H, Plenk H. Evidence for reperfusion injury in cortical bone as a function of crush injury ischemia duration: a rabbit bone chamber study. Bone. 2001;28:94–103.

    Article  CAS  PubMed  Google Scholar 

  41. Winet H. A horizontal intravital microscope bone chamber system for observing microcirculation. Microvasc Res. 1989;37:105–14.

    Article  CAS  PubMed  Google Scholar 

  42. Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JS, Wick TM, Konkle BA, Schwartz BS, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998;91:3527–61.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Winet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Winet, H. (2014). Ischemia and Reperfusion Injury in Bone. In: Koo, KH., Mont, M., Jones, L. (eds) Osteonecrosis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35767-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35767-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35766-4

  • Online ISBN: 978-3-642-35767-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics