Advertisement

Shared Security: How Wireless Sensor Networks Can Benefit from Threshold Cryptography

  • Manuel Koschuch
  • Matthias Hudler
  • Michael Krüger
  • Peter Lory
  • Jürgen Wenzl
Part of the Communications in Computer and Information Science book series (CCIS, volume 314)

Abstract

Wireless sensor networks consist of a huge number of small nodes, communicating wirelessly, to transmit any sort of measured data, like temperature, radiation, etc. At the air interface, unprotected messages can be easily intercepted and modified by an attacker. Traditionally, symmetric cryptography is deployed in sensor networks, due to the nodes being constrained in terms of energy, processing power and memory. If an attacker is now able to extract the secret symmetric key from a single node, the entire (or a huge subset of the) network is compromised. Threshold cryptography is an attractive approach to this problem: by separating the secret into several parts, an attacker has to compromise at least t + 1 nodes to be able to extract a meaningful value. In this work we investigate computational optimizations to the multiparty multiplication protocol of Gennaro, Rabin, and Rabin, thereby improving the running time of certain protocol steps by a factor of up to 6.

Keywords

Sensor networks Threshold cryptography Efficient implementation Multiparty multiplication protocol of Gennaro Rabin and Rabin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Algesheimer, J., Camenisch, J., Shoup, V.: Efficient Computation Modulo a Shared Secret with Application to the Generation of Shared Safe-Prime Products. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 417–432. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of the 20th Annual Symposium on Theory of Computing (STOC 1988), pp. 1–10. ACM Press, New York (1988)Google Scholar
  3. 3.
    Bogetoft, P., Damgård, I., Jakobsen, T., Nielsen, K., Pagter, J., Toft, T.: A Practical Implementation of Secure Auctions Based on Multiparty Integer Computation. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 142–147. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Franklin, M.: Efficient Generation of Shared RSA Keys. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 425–439. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Catalano, D.: Efficient distributed computation modulo a shared secret. In: Catalano, D., Cramer, R., Damgård, I., Di Crescenco, G., Pointcheval, D., Takagi, T. (eds.) Contemporary Cryptology. Advanced Courses in Mathematics - CRM Barcelona, pp. 1–39. Birkhäuser, Basel (2005)CrossRefGoogle Scholar
  6. 6.
    Catalano, D., Gennaro, R., Halevi, S.: Computing Inverses over a Shared Secret Modulus. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 190–206. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: Proceedings of the 20th Annual Symposium on Theory of Computing (STOC 1988), pp. 11–19. ACM Press, New York (1988)Google Scholar
  8. 8.
    Cramer, R., Damgård, I.: Multiparty computation, an introduction. In: Catalano, D., Cramer, R., Damgård, I., Di Crescenco, G., Pointcheval, D., Takagi, T. (eds.) Contemporary Cryptology. Advanced Courses in Mathematics - CRM Barcelona, pp. 41–87. Birkhäuser, Basel (2005)CrossRefGoogle Scholar
  9. 9.
    Cramer, R., Shoup, V.: Signature schemes based on the Strong RSA Assumption. ACM Transactions on Information and System Security (ACM TISSEC) 3(3), 161–185 (2000)CrossRefGoogle Scholar
  10. 10.
    Damgård, I.: Theory and Practice of Multiparty Computation. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 360–364. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J., Toft, T.: Unconditionally Secure Constant-Rounds Multi-party Computation for Equality, Comparison, Bits and Exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Gennaro, R., Halevi, S., Rabin, T.: Secure Hash-and-Sign Signatures without the Random Oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–139. Springer, Heidelberg (1999)Google Scholar
  13. 13.
    Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty computations with applications to threshold cryptography. In: Proceedings of the 17th ACM Symposium on Principles of Distributed Computing (PODC 1998), pp. 101–111. ACM Press, New York (1998)CrossRefGoogle Scholar
  14. 14.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Proceedings of the 19th Annual Symposium on Theory of Computing (STOC 1987), pp. 218–229. ACM Press, New York (1987)Google Scholar
  15. 15.
    Hairer, E., Wanner, G.: Analysis by Its History, 2nd edn. Springer, Berlin (2008)zbMATHCrossRefGoogle Scholar
  16. 16.
    Knuth, D.: The Art of Computer Programming, vol. 2. Addison-Wesley (1998)Google Scholar
  17. 17.
    Koschuch, M., Hudler, M., Krüger, M., Lory, P., Wenzl, J.: Applicability of Multiparty Computation Schemes for Wireless Sensor Networks - Position Paper. In: Sevillano, J.L., Obaidat, M.O., Nicopolitidis, P. (eds.) DCNET 2010 - International Conference on Data Communication Networking - Proceedings of DCNET and OPTICS 2010, pp. 125–128. SciTePress - Science and Technology Publications (2010)Google Scholar
  18. 18.
    Lory, P.: Secure distributed multiplication of two polynomially shared values: Enhancing the efficiency of the protocol. In: Proceedings of the Third International Conference on Emerging Security Information, Systems and Technologies (SECURWARE 2009), pp. 486–491. IEEE Computer Society (2009)Google Scholar
  19. 19.
    Lory, P.: Reducing the complexity in the distributed multiplication protocol of two polynomially shared values. In: Proceedings of the 21st International Conference on Advanced Information Networking and Applications (AINA 2007), pp. 404–408. IEEE Computer Society (2007)Google Scholar
  20. 20.
    Der Merwe, J.V., Dawoud, D., McDonald, S.: A survey on peer-to-peer key management for mobile ad hoc networks. ACM Computing Surveys (CSUR) 39(1), 1–45 (2007)CrossRefGoogle Scholar
  21. 21.
    Miller, G.L.: Riemann’s Hypothesis and tests for primality. In: Proceedings of Seventh Annual ACM Symposium on Theory of Computing, STOC 1975, pp. 234–239. ACM, New York (1975)CrossRefGoogle Scholar
  22. 22.
    Rabin, M.O.: Probabilistic algorithms for testing primality. Journal of Number Theory 12, 128–138 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 3rd edn. Springer, Berlin (2002)zbMATHGoogle Scholar
  25. 25.
    Wenzl, J.: Laufzeitanalyse dreier Versionen eines Mehrparteien-Multiplikationsprotokolls. In: Regensburger Diskussionsbeiträge zur Wirtschaftswissenschaft 440. Institut für Wirtschaftsinformatik, Universität Regensburg (2010)Google Scholar
  26. 26.
    Yao, A.C.: How to generate and exchange secrets. In: Proceedings of the 27th IEEE Symposium on Foundations of Computer Science (FOCS 1986), pp. 162–167. IEEE Computer Society (1986)Google Scholar
  27. 27.
    Yiliang, H., Xiaoyuan, Y., Jun, S., Delong, L.: Verifiable threshold cryptosystems based on elliptic curve. In: International Conference on Computer Networks and Mobile Computing, ICCNMC 2003, pp. 334–337. IEEE Computer Society (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Manuel Koschuch
    • 1
  • Matthias Hudler
    • 1
  • Michael Krüger
    • 1
  • Peter Lory
    • 2
  • Jürgen Wenzl
    • 3
  1. 1.Competence Centre for IT-SecurityFH Campus Wien, University of Applied ScienceViennaAustria
  2. 2.Institut für WirtschaftsinformatikUniversität RegensburgRegensburgGermany
  3. 3.TMMO GmbHKallmünzGermany

Personalised recommendations