Successive Interference Cancellation for Multi-user MIMO-OFDM Ad-Hoc Networks: A Performance-Complexity Tradeoff

  • Nikolaos I. Miridakis
  • Dimitrios D. Vergados
Part of the Communications in Computer and Information Science book series (CCIS, volume 314)


In this paper, we consider a multi-user ad-hoc framework which is established on a Multiple Input-Multiple Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) infrastructure. The reception is accomplished by utilizing the Successive Interference Cancellation (SIC) approach. Particularly, we emphasize on the performance-complexity tradeoff of SIC by implementing two well-known equalizers, namely Zero-Forcing (ZF) and Minimum Mean Squared Error (MMSE). Our main objective is the provision of the system robustness in terms of the error resilience and the computational complexity efficiency. Thereby, a novel hybrid-SIC is proposed, which jointly performs either ZF-SIC or MMSE-SIC according to the instantaneous channel statistics, on an OFDM subcarrier basis. Furthermore, a complexity analysis is provided whereas upper and lower complexity bounds for the proposed scheme are also derived. Finally, the analysis is accompanied with detailed Bit-Error-Rate (BER) numerical results, which along with the corresponding complexity results, demonstrate the usefulness of the proposed scheme.


Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) Hybrid Successive Interference Cancellation (Hybrid SIC) Performance-Computational tradeoff Multi-user networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haene, S., Perels, D., Burg, A.: A Real-Time 4-Stream MIMO-OFDM Transceiver: System Design, FPGA Implementation, and Characterization. IEEE J. Sel. Areas Commun. 26(6), 877–889 (2008)CrossRefGoogle Scholar
  2. 2.
    Lee, H., Lee, B., Lee, I.: Iterative Detection and Decoding With an Improved V-BLAST for MIMO-OFDM Systems. IEEE J. Sel. Areas Commun. 24(3), 504–513 (2006)CrossRefGoogle Scholar
  3. 3.
    Verdu, S.: Multiuser Detection. Cambridge University Press (1998)Google Scholar
  4. 4.
    Kim, E.C., Park, J.S., Kim, J.Y.: Co-channel interference cancellation based on ZF/MMSE SIC with optimal ordering for cooperative communication systems. In: IEEE 9th Int. Symp. Commun. Inf. Technol., Incheon, Korea, pp. 404–409 (September 2009)Google Scholar
  5. 5.
    Ali, O.S., Cardinal, C., Gagnon, F.: On the Performance of Interference Cancellation in Wireless Ad Hoc Networks. IEEE Trans. Commun. 58(2), 433–437 (2010)CrossRefGoogle Scholar
  6. 6.
    Vaze, R., Heath, R.W.: Transmission capacity of ad-hoc networks with multiple antennas using transmit stream adaptation and interference cancelation. In: IEEE Conf. Record of the Forty-Third Asilomar Conf. Signals, Systems and Computers, California, USA, pp. 1709–1713 (November 2009)Google Scholar
  7. 7.
    Louie, R., McKay, M.R., Collings, I.B.: Open-Loop Spatial Multiplexing and Diversity Communications in Ad Hoc Networks. IEEE Trans. Inf. Theory 57(1), 317–344 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Liu, T.-H.: Some Results for the Fast MMSE-SIC Detection in Spatially Multiplexed MIMO Systems. IEEE Trans. Wireless Commun. 8(11), 5443–5448 (2009)CrossRefGoogle Scholar
  9. 9.
    Lai, T.X., Muruganathan, S.D., Sesay, A.B.: Performance Analysis and Multi-Stage Iterative Receiver Design for Concatenated Space-Frequency Block Coding Schemes. IEEE Trans. Wireless Commun. 7(11), 4208–4214 (2008)CrossRefGoogle Scholar
  10. 10.
    Liu, T.-H., Yeh Liu, Y.-L.: Modified fast recursive algorithm for efficient MMSE-SIC detection of the V-BLAST system. IEEE Trans. Wireless Commun. 7(10), 3713–3717 (2008)CrossRefGoogle Scholar
  11. 11.
    Letaief, K.B., Choi, E., Ahn, J.-Y., Chen, R.: Joint Maximum Likelihood Detection and Interference Cancellation for MIMO/OFDM Systems. In: IEEE 58th Veh. Technol. Conf., Orlando, Florida, USA, pp. 612–616 (October 2003)Google Scholar
  12. 12.
    Zhou, Y., Ng, T.-S.: Performance Analysis on MIMO-OFCDM Systems with Multi-Code Transmission. IEEE Trans. Wireless Commun. 8(9), 4426–4433 (2009)CrossRefGoogle Scholar
  13. 13.
    Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and Its Applications, 2nd edn. Wiley, Chichester (1995)zbMATHGoogle Scholar
  14. 14.
    Jiang, H., Wang, P., Zhuang, W., Shen, X.: An Interference Aware Distributed Resource Management Scheme for CDMA-Based Wireless Mesh Backbone. IEEE Trans. Wireless Commun. 6(12), 4558–4567 (2007)CrossRefGoogle Scholar
  15. 15.
    Weber, S.P., Andrews, J.G., Yang, X., de Veciana, G.: Transmission Capacity of Wireless Ad Hoc Networks With Successive Interference Cancellation. IEEE Trans. Inf. Theory 53(8), 2799–2814 (2007)CrossRefGoogle Scholar
  16. 16.
    Zhuang, H., Dai, L., Zhou, S., Yao, Y.: Low Complexity Per-Antenna Rate and Power Control Approach for Closed-Loop V-BLAST. IEEE Trans. Commun. 51(11), 1783–1787 (2003)CrossRefGoogle Scholar
  17. 17.
    Wolniansky, P.W., Foschini, G.J., Golden, G.D., Valenzuela, R.A.: V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel. In: Proc. URSI Int. Symp. Signals, Systems, Electronics, Pisa, Italy, pp. 295–300 (September-October 1998)Google Scholar
  18. 18.
    Nam, S.H., Shin, O.-S., Lee, K.B.: Transmit Power Allocation for a Modified V-BLAST System. IEEE Trans. Commun. 52(7), 1074–1079 (2004)CrossRefGoogle Scholar
  19. 19.
    Nam, S.H., Lee, K.B.: Transmit power allocation for an extended V-BLAST system. In: The 13th IEEE Int. Symp. Personal, Indoor and Mobile Radio Commun., vol. 2, pp. 843–848 (2002)Google Scholar
  20. 20.
    Luo, Z., Liu, S., Zhao, M., Liu, Y.: A Novel Fast Recursive MMSE-SIC Detection Algorithm for V-BLAST Systems. IEEE Trans. Wireless Commun. 6(6), 2022–2025 (2007)CrossRefGoogle Scholar
  21. 21.
    Whang, Y., Park, J.H., Whang, R.J.: Low Complexity Successive Interference Cancellation for OFDM Systems over Time-Varying Multipath Channels. In: IEEE 69th Veh. Technol. Conf. (VTC 2009), Barcelona, Spain, pp. 1–5 (April 2009)Google Scholar
  22. 22.
    Miridakis, N.I., Vergados, D.D.: A Survey on the Successive Interference Cancellation performance for single-antenna and multiple-antenna OFDM Systems. IEEE Commun. Surveys Tutorials (November 2010) (submitted)Google Scholar
  23. 23.
    Zijian, A., Berkmann, J., Spiegel, C., Scholand, T., Bruck, G.H., Drewes, C., Gunzelmann, B., Jung, P.: On MIMO With Successive Interference Cancellation Applied to UTRA LTE. In: IEEE 3rd Int. Symp. Commun., Control and Signal Process., St. Julians, Malta, pp. 1009–1013 (March 2008)Google Scholar
  24. 24.
    Marabissi, D., Fantacci, R., Papini, S.: Robust Multiuser Interference Cancellation for OFDM Systems With Frequency Offset. IEEE Trans. Wireless Commun. 5(11), 3068–3076 (2006)CrossRefGoogle Scholar
  25. 25.
    Gan, Y.H., Ling, C., Mow, W.H.: Complex Lattice Reduction Algorithm for Low-Complexity Full-Diversity MIMO Detection. IEEE Trans. Signal Process. 57(7), 2701–2710 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nikolaos I. Miridakis
    • 1
  • Dimitrios D. Vergados
    • 1
  1. 1.Department of InformaticsUniversity of PiraeusPiraeusGreece

Personalised recommendations