Advertisement

Controlling an Iteration-Wise Coherence in Dataflow

  • Sébastien Limet
  • Sophie Robert
  • Ahmed Turki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7253)

Abstract

This paper formalizes a data-flow component model specifically designed for building real-time interactive scientific visualization applications. The advantages sought in this model are performance, coherence and application design assistance. The core of the article deals with the interpretation of a property and constraint based user specification to generate a concrete assembly based on our component model. To fulfill one or many coherence constraints simultaneously, the application graph is processed, particularly to find the optimal locations of filtering objects called regulators. The automatic selection and inter-connection of connectors in order to maintain the requested coherences and the highest performance possible is also part of the process.

Keywords

Composition Coherence Coordination Synchronization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Callahan, S.P., Freire, J., Santos, E., Scheidegger, C.E., Silva, C.T., Vo, H.T.: VisTrails: visualization meets data management. In: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data, p. 747. ACM (2006)Google Scholar
  2. 2.
    Chinthaka, E., Ekanayake, J., Leake, D., Plale, B.: CBR Based Workflow Composition Assistant. In: 2009 Congress on Services - I, pp. 352–355 (July 2009)Google Scholar
  3. 3.
    Clarke, D., Proença, J., Lazovik, A., Arbab, F.: Channel-based coordination via constraint satisfaction. Science of Computer Programming 76(8), 681–710 (2011)zbMATHCrossRefGoogle Scholar
  4. 4.
    Velasco Elizondo, P., Lau, K.-K.: A catalogue of component connectors to support development with reuse. Journal of Systems and Software 83(7), 1165–1178 (2010)CrossRefGoogle Scholar
  5. 5.
    Goodale, T., Allen, G., Lanfermann, G., Masso, J., Radke, T., Seidel, E., Shalf, J.: The cactus framework and toolkit: Design and applications. In: Vector and Parallel Processing, pp. 1–31 (2002)Google Scholar
  6. 6.
    Groth, P., Gil, Y.: Analyzing the Gap between Workflows and their Natural Language Descriptions. In: 2009 Congress on Services - I, pp. 299–305 (July 2009) Google Scholar
  7. 7.
    Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M., Li, P., Oinn, T.: Taverna: a tool for building and running workflows of services. Nucleic Acids Research 34(Web Server issue), W729–W732 (2006)Google Scholar
  8. 8.
    Lesage, J.-D., Raffin, B.: High Performance Interactive Computing with FlowVR. In: IEEE VR 2008 SEARIS Workshop, Reno, USA, pp. 13–16. Shaker Verlag (2008)Google Scholar
  9. 9.
    Limet, S., Robert, S., Turki, A.: FlowVR-SciViz: A component-based framework for interactive scientific visualization. In: Component-Based High Performance Computing (CBHPC 2009), Portland, OR, USA. ACM (November 2009)Google Scholar
  10. 10.
    Limet, S., Robert, S., Turki, A.: Coherence and Performance for Interactive Scientific Visualization Applications. In: Apel, S., Jackson, E. (eds.) SC 2011. LNCS, vol. 6708, pp. 149–164. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Ludascher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E.A., Tao, J., Zhao, Y.: Scientific workflow management and the Kepler system. Concurrency and Computation: Practice and Experience 18(10), 1039–1065 (2006)CrossRefGoogle Scholar
  12. 12.
    Pignotti, E., Edwards, P., Preece, A.D., Gotts, N., Polhill, G.: Enhancing Workflow with a Semantic Description of Scientific Intent. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 644–658. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Qin, J., Fahringer, T.: A novel domain oriented approach for scientific Grid workflow composition. In: 2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis (November 2008)Google Scholar
  14. 14.
    Taylor, I., Shields, M., Wang, I., Harrison, A.: Visual Grid Workflow in Triana. Journal of Grid Computing 3(3-4), 153–169 (2006)CrossRefGoogle Scholar
  15. 15.
    Wang, L., Lu, S., Fei, X., Chebotko, A., Victoria Bryant, H., Ram, J.L.: Atomicity and provenance support for pipelined scientific workflows. Future Generation Computer Systems 25(5), 568–576 (2009)CrossRefGoogle Scholar
  16. 16.
    Yildiz, U., Guabtni, A., Ngu, A.H.H.: Towards scientific workflow patterns. In: Proceedings of the 4th Workshop on Workflows in Support of Large-Scale Science, pp. 1–10. ACM (2009)Google Scholar
  17. 17.
    Yildiz, U., Mouallem, P., Vouk, M., Crawl, D., Altintas, I.: Fault-Tolerance in Dataflow-Based Scientific Workflow Management. In: 6th World Congress on Services (2010)Google Scholar
  18. 18.
    Zhao, Z., Belloum, A., Wibisono, A., Terpstra, F., de Boer, P.T., Sloot, P., Hertzberger, B.: Scientific workflow management: between generality and applicability. In: Quality Software (QSIC 2005), pp. 357–364. IEEE (2006)Google Scholar
  19. 19.
    Zimmermann, A., Knoke, M., Huck, A., Hommel, G.: Towards version 4.0 of TimeNET. In: 13th GI/ITG Conference Measuring, Modelling and Evaluation of Computer and Communication Systems (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sébastien Limet
    • 1
  • Sophie Robert
    • 1
  • Ahmed Turki
    • 1
  1. 1.Laboratoire d’Informatique Fondamentale d’OrléansUniversité d’OrléansFrance

Personalised recommendations