Advertisement

Fabrication of Ultrahigh-Density Self-assembled InAs Quantum Dots by Strain Compensation

Chapter
  • 855 Downloads
Part of the Nano-Optics and Nanophotonics book series (NON)

Abstract

A fabrication method of semiconductor quantum dots (QDs), which is an important fundamental technology for realizing high-performance QD optical devices, is discussed in this chapter. In the first section, we introduce self-assembly of InAs QDs based on the Stranski-Krastanov growth mode. In the second section, we discuss the fabrication of ultrahigh-density QDs by a strain compensation technique. Finally, we present applications using the ultrahigh-density QDs, in particular, various unique properties of a highly stacked InAs QD laser diode.

Keywords

Quantum Well Semiconductor Optical Amplifier Internal Quantum Efficiency Fiber Optic Communication System Strain Compensation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Y. Arakawa, H. Sakaki, Appl. Phys. Lett. 40, 939 (1982) ADSCrossRefGoogle Scholar
  2. 2.
    T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu, Y. Arakawa, Jpn. J. Appl. Phys. 44, L620 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    L. Goldstein, F. Glas, J.Y. Marzin, M.N. Charasse, G. Le Roux, Appl. Phys. Lett. 47, 1099 (1985) ADSCrossRefGoogle Scholar
  4. 4.
    I.N. Stranski, L. Krastanow, Akad. Wiss. Wien Math.-Nat. IIb 146, 797 (1937) Google Scholar
  5. 5.
    X.D. Huang, A. Stintz, C.P. Hains, G.T. Liu, J. Cheng, K.J. Malloy, IEEE Photonics Technol. Lett. 12, 227 (2000) ADSCrossRefGoogle Scholar
  6. 6.
    A. Markus, J.X. Chen, C. Paranthoen, A. Fiore, C. Platz, O. Gauthier-Lafaye, Appl. Phys. Lett. 82, 1818 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    J.S. Wang, R.S. Hsiao, J.F. Chen, C.S. Yang, G. Lin, C.Y. Liang, C.M. Lai, H.Y. Liu, T.W. Chi, J.Y. Chi, IEEE Photonics Technol. Lett. 17, 1590 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    C.Y. Liu, S.F. Yoon, Q. Cao, C.Z. Tong, H.F. Li, Appl. Phys. Lett. 90, 041103 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    R. Kovsh, N.A. Maleev, A.E. Zhukov, S.S. Mikhrin, A.P. Vasil’ev, Yu.M. Shernyakov, M.V. Maximov, D.A. Livshits, V.M. Ustinov, Zh.I. Alferov, N.N. Ledentsof, D. Bimberg, Electron. Lett. 38, 1104 (2002) CrossRefGoogle Scholar
  10. 10.
    M. Ishida, N. Hatori, T. Akiyama, K. Otsubo, Y. Nakata, H. Ebe, M. Sugawara, Y. Arakawa, Appl. Phys. Lett. 85, 4145 (2004) ADSCrossRefGoogle Scholar
  11. 11.
    M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, Y. Nakata, J. Phys. D 38, 2126 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    H. Saito, K. Nishi, A. Kamei, S. Sugou, IEEE Photonics Technol. Lett. 12, 1298 (2000) ADSCrossRefGoogle Scholar
  13. 13.
    J. Brault, M. Gendry, O. Marty, M. Pitaval, J. Olivares, G. Grenet, G. Hollinger, Appl. Surf. Sci. 162, 584 (2000) ADSCrossRefGoogle Scholar
  14. 14.
    H. Yang, X. Mu, I.B. Zotova, Y.J. Ding, G.J. Salamo, J. Appl. Phys. 91, 3925 (2002) ADSCrossRefGoogle Scholar
  15. 15.
    K. Akahane, N. Yamamoto, N. Ohtani, Y. Okada, M. Kawabe, J. Cryst. Growth 256, 7 (2003) ADSCrossRefGoogle Scholar
  16. 16.
    K. Akahane, T. Kawamura, K. Okino, H. Koyama, S. Lan, Y. Okada, M. Kawabe, Appl. Phys. Lett. 73, 3411 (1998) ADSCrossRefGoogle Scholar
  17. 17.
    K. Akahane, H.Z. Xu, Y. Okada, M. Kawabe, Physica E 11, 94 (2001) ADSCrossRefGoogle Scholar
  18. 18.
    G. Springholz, M. Pinczolits, V. Holy, S. Zerlauth, I. Vavra, G. Bauer, Physica E 9, 149 (2001) ADSCrossRefGoogle Scholar
  19. 19.
    X.D. Huang, A. Stintz, C.P. Hains, G.T. Liu, J. Cheng, K.J. Malloy, IEEE Photonics Technol. Lett. 12, 227 (2000) ADSCrossRefGoogle Scholar
  20. 20.
    K. Akahane, N. Ohtani, Y. Okada, M. Kawabe, J. Cryst. Growth 245, 31 (2002) ADSCrossRefGoogle Scholar
  21. 21.
    K. Akahane, N. Yamamoto, T. Kawanishi, Phys. Status Solidi A 208, 425 (2011) ADSCrossRefGoogle Scholar
  22. 22.
    S. Sudo, K. Mizutani, J. De Merlier, T. Okamoto, K. Tsuruoka, K. Sato, K. Kudo, Electron. Lett. 42, 347 (2006) CrossRefGoogle Scholar
  23. 23.
    T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, A. Kuramata, H. Ebe, Y. Arakawa, IEEE Photonics Technol. Lett. 17, 1614 (2005) ADSCrossRefGoogle Scholar
  24. 24.
    D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Science 254, 1178 (1991) ADSCrossRefGoogle Scholar
  25. 25.
    E. Swanson, D. Huang, M. Hee, J. Fujimoto, C. Lin, C. Puliafito, Opt. Lett. 17, 151 (1992) ADSCrossRefGoogle Scholar
  26. 26.
    O. Kojima, H. Nakatani, T. Kita, O. Wada, K. Akahane, M. Tsuchiya, J. Appl. Phys. 103, 113504 (2008) ADSCrossRefGoogle Scholar
  27. 27.
    K. Akahane, N. Yamamoto, M. Naruse, T. Kawazoe, T. Yatsui, M. Ohtsu, Jpn. J. Appl. Phys. 50, 04DH05 (2011) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.National Institute of Information and Communications TechnologyKoganeiJapan

Personalised recommendations