Skip to main content

Near-Field Excitation Dynamics in Molecules: Nonuniform Light-Matter Interaction Theory Beyond a Dipole Approximation

  • Chapter
  • 961 Accesses

Part of the book series: Nano-Optics and Nanophotonics ((NON))

Abstract

We have presented near-field excitation dynamics in molecules beyond diffraction limit of the incident visible laser field. A generalized theoretical description of a light-matter interaction taking account of nonuniformity of the light due to its intensity gradient has been developed on the basis of the multipolar Hamiltonian. The computations are demonstrated in high-harmonic generation spectra of a linear chain molecule of dicyanodiacetylene, NC6N and also in optical forces induced by a near-field for a 1 nm-sized metal particle mimicked by a jellium model and for C60.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    These bond lengths remain almost unchanged (i.e., at most 0.0024 Å for C3–C4) even if the geometry optimization was performed by using the B3LYP functional [58, 59].

References

  1. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Nature 391, 667 (1998)

    Article  ADS  Google Scholar 

  2. K. Kobayashi, S. Sangu, H. Ito, M. Ohtsu, Phys. Rev. A 63, 013806 (2001)

    Article  ADS  Google Scholar 

  3. S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, A.A.G. Requicha, Nat. Mater. 2, 229 (2003)

    Article  ADS  Google Scholar 

  4. P.N. Prasad, Nanophotonics (Wiley-Interscience, New York, 2004)

    Book  Google Scholar 

  5. C. Girard, Rep. Prog. Phys. 68, 1883 (2005)

    Article  ADS  Google Scholar 

  6. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  7. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007)

    Google Scholar 

  8. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Chem. Phys. Lett. 26, 163 (1974)

    Article  ADS  Google Scholar 

  9. D.L. Jeanmaire, R.P. Van Duyne, J. Electroanal. Chem. 84, 1 (1977)

    Article  Google Scholar 

  10. M.G. Albrecht, J.A. Creighton, J. Am. Chem. Soc. 99, 5215 (1977)

    Article  Google Scholar 

  11. K. Imura, H. Okamoto, M.K. Hossain, M. Kitajima, Nano Lett. 6, 2173 (2006)

    Article  ADS  Google Scholar 

  12. D.W. Brandl, N.A. Mirin, P. Nordlander, J. Phys. Chem. B 110, 12302 (2006)

    Article  Google Scholar 

  13. J. Zhao, A.O. Pinchuk, J.M. Mcmahon, S. Li, L.K. Ausman, A.L. Atkinson, G.C. Schatz, Acc. Chem. Res. 41, 1710 (2008). And references therein

    Article  Google Scholar 

  14. M. Moskovits, Rev. Mod. Phys. 57, 783 (1985)

    Article  ADS  Google Scholar 

  15. K. Kneipp, M. Moskovits, H. Kneipp (eds.), Surface-Enhanced Raman Scattering (Springer, Heidelberg, 2006)

    Google Scholar 

  16. R. Aroca, Surface-Enhanced Vibrational Spectroscopy (Wiley, New York, 2006)

    Book  Google Scholar 

  17. S. Nie, S.R. Emory, Science 275, 1102 (1997)

    Article  Google Scholar 

  18. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Phys. Rev. Lett. 78, 1667 (1997)

    Article  ADS  Google Scholar 

  19. T. Vo-Dinh, K. Houck, D.L. Stokes, Anal. Chem. 66, 3379 (1994)

    Article  Google Scholar 

  20. Y.C. Cao, R. Jin, C.A. Mirkin, Science 297, 1536 (2002)

    Article  ADS  Google Scholar 

  21. K. Cho, Prog. Theor. Phys. Suppl. 225–233 (1991)

    Google Scholar 

  22. J.K. Jenkins, S. Mukamel, J. Chem. Phys. 98, 7046 (1993)

    Article  ADS  Google Scholar 

  23. O. Keller, Phys. Rep. 268, 85 (1996)

    Article  ADS  Google Scholar 

  24. D. Abramavicius, S. Mukamel, J. Chem. Phys. 124, 034113 (2006)

    Article  ADS  Google Scholar 

  25. K. Lopata, D. Neuhauser, R. Baer, J. Chem. Phys. 127, 154714 (2007)

    Article  ADS  Google Scholar 

  26. E. Lorin, S. Chelkowski, A. Bandrauk, Comput. Phys. Commun. 177, 908 (2007)

    Article  ADS  MATH  Google Scholar 

  27. J.Y. Yan, W. Zhang, S.Q. Duan, X.G. Zhao, A.O. Govorov, Phys. Rev. B 77, 165301 (2008)

    Article  ADS  Google Scholar 

  28. K. Lopata, D. Neuhauser, J. Chem. Phys. 130, 104707 (2009)

    Article  ADS  Google Scholar 

  29. C. Cohen-Tannoudji, J. Dupont-Roc and, G. Grynberg, Photons and Atoms—Introduction to Quantum Electrodynamics (Wiley-Interscience, New York, 1989)

    Google Scholar 

  30. D.P. Craig, T. Thirunamachandran, Molecular Quantum Electrodynamics (Dover, New York, 1998)

    Google Scholar 

  31. S. Mukamel, Principles of Nonlinear Optical Spectroscopy. Oxford Series on Optical and Imaging Sciences (Oxford University Press, London, 1999)

    Google Scholar 

  32. K. Yabana, G.F. Bertsch, Phys. Rev. B 54, 4484 (1996)

    Article  ADS  Google Scholar 

  33. K. Nobusada, K. Yabana, Phys. Rev. A 70, 043411 (2004)

    Article  ADS  Google Scholar 

  34. K. Shiratori, K. Nobusada, K. Yabana, Chem. Phys. Lett. 404, 365 (2005)

    Article  ADS  Google Scholar 

  35. K. Nobusada, K. Yabana, Phys. Rev. A 75, 032518 (2007)

    Article  ADS  Google Scholar 

  36. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1998)

    Google Scholar 

  37. E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

    Article  ADS  Google Scholar 

  38. F. Calvayrac, P.G. Reinhard, E. Suraud, C.A. Ullrich, Phys. Rep. 337, 493 (2000)

    Article  ADS  Google Scholar 

  39. M.A.L. Marques, A. Castro, G.F. Bertsch, A. Rubio, Comput. Phys. Commun. 151, 60 (2003)

    Article  ADS  Google Scholar 

  40. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  41. L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

    Article  ADS  Google Scholar 

  42. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  43. I. Vasiliev, S. Ogut, J.R. Chelikowsky, Phys. Rev. B 65, 115416 (2002)

    Article  ADS  Google Scholar 

  44. A. Wasserman, N.T. Maitraand, K. Burke, Phys. Rev. Lett. 91, 263001 (2003)

    Article  ADS  Google Scholar 

  45. G.F. Gabriele, G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  46. F. Cataldo, Polyhedron 23, 1889 (2004)

    Article  Google Scholar 

  47. TURBOMOLE Version 5.10, Quantum Chemistry Group, University of Karlsruhe, Karlsruhe, Germany (2008)

    Google Scholar 

  48. R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. 162, 165 (1989)

    Article  ADS  Google Scholar 

  49. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  50. A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 97, 2571 (1992)

    Article  ADS  Google Scholar 

  51. K. Yabana, G.F. Bertsch, Int. J. Quant. Chem. 75, 55 (1999)

    Article  Google Scholar 

  52. J.R. Chelikowsky, N. Troullier, K. Wu, Y. Saad, Phys. Rev. B 50, 11355 (1994)

    Article  ADS  Google Scholar 

  53. K. Burnett, V.C. Reed, J. Cooper, P.L. Knight, Phys. Rev. A 45, 3347 (1992)

    Article  ADS  Google Scholar 

  54. T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545 (2000)

    Article  ADS  Google Scholar 

  55. S. Tojo, M. Hasuo, Phys. Rev. A 71, 012508 (2005)

    Article  ADS  Google Scholar 

  56. J.J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, Reading, 1993) (revised edition)

    Google Scholar 

  57. R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press, San Diego, 2008)

    Google Scholar 

  58. C.T. Lee, W.T. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  59. A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Article  ADS  Google Scholar 

  60. A. Ashkin, Phys. Rev. Lett. 24, 156 (1970)

    Article  ADS  Google Scholar 

  61. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Opt. Lett. 11, 288 (1986)

    Article  ADS  Google Scholar 

  62. A. Ashkin, IEEE J. Sel. Top. Quantum Electron. 6, 841 (2000)

    Article  Google Scholar 

  63. D.G. Grier, Nature 424, 810 (2003)

    Article  ADS  Google Scholar 

  64. K.C. Neuman, S.M. Block, Rev. Sci. Instrum. 75, 2787 (2004)

    Article  ADS  Google Scholar 

  65. J.C. Crocker, D.G. Grier, Phys. Rev. Lett. 77, 1897 (1996)

    Article  ADS  Google Scholar 

  66. B. Lin, J. Yu, S.A. Rice, Colloids Surf. A 174, 121 (2000)

    Article  Google Scholar 

  67. K. Svoboda, S.M. Block, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994)

    Article  Google Scholar 

  68. U. Seifert, Adv. Phys. 46, 13 (1997)

    Article  ADS  Google Scholar 

  69. A.D. Mehta, M. Rief, J.A. Spudich, D.A. Smith, R.M. Simmons, Science 283, 1689 (1999)

    Article  ADS  Google Scholar 

  70. M.J. Lang, S.M. Block, Am. J. Phys. 71, 201 (2003)

    Article  ADS  Google Scholar 

  71. L. Novotny, R.X. Bian, X.S. Xie, Phys. Rev. Lett. 79, 645 (1997)

    Article  ADS  Google Scholar 

  72. E. Lorin, S. Chelkowski, A. Bandrauk, Comput. Phys. Commun. 177, 908 (2007)

    Article  ADS  MATH  Google Scholar 

  73. K. Lopata, D. Neuhauser, J. Chem. Phys. 130, 104707 (2009)

    Article  ADS  Google Scholar 

  74. K. Okamoto, S. Kawata, Phys. Rev. Lett. 83, 4534 (1999)

    Article  ADS  Google Scholar 

  75. P.C. Chaumet, M. Nieto-Vesperinas, Phys. Rev. B 61, 14119 (2000)

    Article  ADS  Google Scholar 

  76. A.I. Bishop, T.A. Nieminen, N.R. Heckenberg, H. Rubinsztein-Dunlop, Phys. Rev. A 68, 033802 (2003)

    Article  ADS  Google Scholar 

  77. T. Iida, H. Ishihara, Phys. Rev. Lett. 90, 057403 (2003)

    Article  ADS  Google Scholar 

  78. V. Wong, M.A. Ratner, Phys. Rev. B 73, 075416 (2006)

    Article  ADS  Google Scholar 

  79. T. Iwasa, K. Nobusada, Phys. Rev. A 80, 043409 (2009)

    Article  ADS  Google Scholar 

  80. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Brooks/Cole Thomson Learning, Pacific Grove, 1976)

    Google Scholar 

Download references

Acknowledgements

This research was supported by a Grant-in-Aid (No. 21350018) and by the Next-Generation Supercomputer Project from the Ministry of Education, Culture, Sports, Science and Technology of Japan. The computation was partly performed at the Research Center for Computational Science, Okazaki, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuyuki Nobusada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nobusada, K. (2013). Near-Field Excitation Dynamics in Molecules: Nonuniform Light-Matter Interaction Theory Beyond a Dipole Approximation. In: Ohtsu, M. (eds) Progress in Nanophotonics 2. Nano-Optics and Nanophotonics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35719-0_1

Download citation

Publish with us

Policies and ethics