Advertisement

Feature Selection for the Prediction and Visualization of Brain Tumor Types Using Proton Magnetic Resonance Spectroscopy Data

  • Félix Fernando González-Navarro
  • Lluís A. Belanche-Muñoz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7548)

Abstract

In cancer diagnosis, classification of the different tumor types is of great importance. An accurate prediction of basic tumor types provides better treatment and may minimize the negative impact of incorrectly targeted toxic or aggressive treatments. Moreover, the correct prediction of cancer types in the brain using non-invasive information –e.g. 1H-MRS data– could avoid patients to suffer collateral problems derived from exploration techniques that require surgery. We present a feature selection algorithm that is specially designed to be used in 1H-MRS (Proton Magnetic Resonance Spectroscopy) data of brain tumors. This algorithm takes advantage of the fact that some metabolic levels may consistently present notorious differences between specific tumor types. We present detailed experimental results using an international dataset in which highly attractive models are obtained. The models are evaluated according to their accuracy, simplicity and medical interpretability. We also explore the influence of redundancy in the modelling process. Our results suggest that a moderate amount of redundant metabolites can actually enhance class-separability and therefore accuracy.

Keywords

Cancer Brain tumours Feature selection Classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zamani, A.: Proton MR Spectroscopy. In: Minimal invasive Neurosurgery, pp. 75–86. Humana Press (2005)Google Scholar
  2. 2.
    Sibtain, N.: The clinical value of proton magnetic resonance spectroscopy in adult brain tumours. Clinical Radiology 62, 109–119 (2007)CrossRefGoogle Scholar
  3. 3.
    Bruhn, H., et al.: Noninvasive differentiation of tumors with use of localized h-1 mr spectroscopy in vivo: initial experience in patients with cerebral tumors. Radiology 172, 541–548 (1989)Google Scholar
  4. 4.
    Hansen, J., et al.: 1h-mr spectroscopy of the brain: Absolute quantification of metabolites. Radiology 246(2), 318–332 (2006)Google Scholar
  5. 5.
    Tate, A., et al.: Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra. NMR in Biomedicine 19, 411–434 (2006)CrossRefGoogle Scholar
  6. 6.
    Garcia, J., et al.: On the use of long te and short te sv mr. spectroscopy to improve the automatic brain. tumor diagnosis. Tech. rep. (2007), ftp://ftp.esat.kuleuven.ac.be/pub/SISTA/ida/reports/07-55.pdf
  7. 7.
    Vellido, A., et al.: Outlier exploration and diagnostic classification of a multi-centre 1h-mrs brain tumour database. Neurocomputing 72, 3085–3097 (2009)CrossRefGoogle Scholar
  8. 8.
    Usenius, J., et al.: Automated classification of human brain tumors by neural network analysis using in vivo 1h magnetic resonance spectroscopic metabolite phenotypes. Neuroreport 7(10), 1597–1600 (1996)CrossRefGoogle Scholar
  9. 9.
    Ala-Korpela, M., et al.: Artificial neural network analysis of 1h nuclear magnetic resonance spectroscopic data from human plasma. Neurocumputing 13-15, 3085–3097 (2009)Google Scholar
  10. 10.
    Majos, C., et al.: Brain tumor classification by proton mr spectroscopy: Comparison of diagnostic accuracy at short and long te. American Journal of Neuroradiology 25, 1696–1704 (2004)Google Scholar
  11. 11.
    Devos, A.: Quantification and classification of mrs data and applications to brain tumour recognition. Ph.D. thesis, Katholieke Univ. Leuven (2005)Google Scholar
  12. 12.
    Lukas, L., et al.: Brain tumor classification based on long echo proton mrs signals. Artificial Intelligence in Medicine 31, 73–89 (2004)CrossRefGoogle Scholar
  13. 13.
    Huang, Y., Lisboa, P., El-Deredy, W.: Tumour grading from magnetic resonance spectroscopy: a comparison fo feature extraction with variable selection. Statistics in Medicine 22, 147–164 (2003)CrossRefGoogle Scholar
  14. 14.
    Nikulin, A., et al.: Near-optimal region selection for feature space reduction: novel preprocessing methods for classifying mr spectra. NMR in Biomedicine 11, 209–216 (1998)CrossRefGoogle Scholar
  15. 15.
    Luts, J., et al.: A combined mri and mrsi based multiclass system from brain tumour recognition using ls-svms with class probabilities and feature selection. Artificial Ingelligence in Medicine 40, 87–102 (2007)CrossRefGoogle Scholar
  16. 16.
    González, F., et al.: Feature and model selection with discriminatory visualization for diagnostic classification of brain tumors. Neurocomputing 73, 622–632 (2010)CrossRefGoogle Scholar
  17. 17.
    Romero, E., Vellido, A., Sopena, J.M.: Feature Selection with Single-Layer Perceptrons for a Multicentre 1h-mrs Brain Tumour Database. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009, Part I. LNCS, vol. 5517, pp. 1013–1020. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Lisboa, P., et al.: Classification, dimensionality reduction, and maximally discriminatory visualization of a multicentre 1h-mrs database of brain tumors. In: ICMLA 2008: Proceedings of the 2008 Seventh International Conference on Machine Learning and Applications, pp. 613–618. IEEE Computer Society (2008)Google Scholar
  19. 19.
    Castillo, M., Kwock, L., Mukherji, S.: Clinical applications of proton mr spectroscopy. AJNR 17, 1–15 (1996)Google Scholar
  20. 20.
    INTERPRET, International network for pattern recognition of tumours using magnetic resonance project (2002), http://azizu.uab.es/INTERPRET
  21. 21.
    Ladroue, C.: Pattern recognition techniques for the study of magnetic resonance spectra of brain tumours. Ph.D. thesis, St. George’s Hospital Medical School (2003)Google Scholar
  22. 22.
    Govindaraju, V., Young, K., Maudsley, A.: Proton nmr chemical shifts and coupling constants for brain metabolites. NMR in Biomedicine 13(3), 129–153 (2000)CrossRefGoogle Scholar
  23. 23.
    Farooqui, A., Ong, W., Horrocks, L.: Glutamate and Aspartate in Brain. Springer, New York (2008)Google Scholar
  24. 24.
    Lisboa, P., et al.: Cluster based visualisation with scatter matrices. Pattern Recognition Letters 29(13), 1814–1823 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Félix Fernando González-Navarro
    • 1
  • Lluís A. Belanche-Muñoz
    • 2
  1. 1.Instituto de IngenieríaUniversidad Autónoma de Baja California Bulevard Benito JuárezMexicaliMexico
  2. 2.Dept. de Llenguatges i Sistemes InformàticsUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations