Reliability of miRNA Microarray Platforms: An Approach Based on Random Effects Linear Models

  • Niccolò Bassani
  • Federico Ambrogi
  • Cristina Battaglia
  • Elia Biganzoli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7548)


MiRNAs are short ribonucleic acid (RNA) molecules, acting as post-transcriptional regulators. Intensity levels of thousand of miRNAs are commonly measured via microarray platforms,with pros and cons similar to those for gene expression arrays.

Data reliability for miRNA microarrays is a crucial point to obtain correct estimates of miRNA intensity, and maximizing biological relative to technical variability is a task that has to be properly addressed.

To such aim, random effects models provide a powerful instrument to characterize different sources of variability. Here we evaluated repeatability of Affymetrix Gene Chip © miRNA Array by fitting random effects models separately for 4 cell lines.

Results indicated good platform performance both in terms of within-sample repeatability and between-lines reproducibility. Validation on publicly available NCI60 dataset showed similar patterns of variability, suggesting good reproducibility between experiments.

Future research will explore the possibility to use this method to compare normalization methods as well as genomic platforms.


miRNA reliability random effects variance components technical variation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ambros, V.: MicroRNA Pathways in Flies and Worms: Growth, Death, Fat, Stress, and Timing. Cell 113, 673–676 (2003)CrossRefGoogle Scholar
  2. 2.
    Lai, E.C.: microRNAs: Runts of the Genome Assert Themselves. Curr. Biol. 13, R925–R936 (2003)CrossRefGoogle Scholar
  3. 3.
    Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., Barzilai, A., Einat, P., Einav, U., Meiri, E., Sharon, E., Spector, Y., Bentwich, Z.: Identification of Hundreds of Conserved and Nonconserved Human microRNAs. Nat. Genet. 37(7), 766–770 (2005)CrossRefGoogle Scholar
  4. 4.
    Esquela-Kerscher, A., Slack, F.J.: Oncomirs - microRNAs with a Role in Cancer. Nat. Rev. Cancer 6, 259–269 (2006)CrossRefGoogle Scholar
  5. 5.
    Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B.L., Mak, R.H., Ferrando, A.A., Downing, J.R., Jacks, T., Horvitz, H.R., Golub, T.R.: MicroRNA Expression Profiles Classify Human Cancers. Nature 435(7043), 834–838 (2005)CrossRefGoogle Scholar
  6. 6.
    Miska, E.A., Alvarez-Saavedra, E., Townsend, M., Yoshii, A., Sestan, N., Rakic, P., Constantine-Paton, M., Horvitz, H.R.: Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol. 5(9), R68.1–R68.13 (2004)CrossRefGoogle Scholar
  7. 7.
    Sato, F., Tsuchiya, S., Terasawa, K., Tsujimoto, G.: Intra-Platform Repeatability and Inter-Platform Comparability of MicroRNA Microarray Technology. PLoSONE 4(5), e5540 (2009)Google Scholar
  8. 8.
    Ach, R.A., Wang, H., Curry, B.: Measuring microRNAs: Comparisons of Microarray and Quantitative PCR Measurements, and of Different Total RNA Prep Methods. BMC Biotechnology 8 (2008)Google Scholar
  9. 9.
    Chen, Y., Gelfond, J.A.L., McManus, L.M., Shireman, P.K.: Reproducibility of Quantitative RT-PCR Array in miRNA Expression Profiling and Comparison with Microarray Analysis. BMC Genomics 10 (2009)Google Scholar
  10. 10.
    Pradervand, S., Weber, J., Lemoine, F., Consales, F., Paillusson, A., Dupasquier, M., Thomas, J., Richter, H., Kaessmann, H., Beaudoing, E., Hagenbuchle, O., Harshmann, K.: Concordance among digital gene expression, microarrays, and qPCR when measuring differential expression of microRNAs. BioTechniques 48(3), 219–222 (2010)CrossRefGoogle Scholar
  11. 11.
    Yauk, C.L., Rowan-Carroll, A., Stead, J.D.H., Williams, A.: Cross-platform analysis of global microRNA expression technologies. BMC Genomics 11 (2010)Google Scholar
  12. 12.
    Laird, N.M., Ware, J.H.: Random-Effects Models for Longitudinal Data. Biometrics 38, 963–974 (1982)zbMATHCrossRefGoogle Scholar
  13. 13.
    Pinheiro, J.C., Bates, D.M.: Mixed-effects Models in S and S-PLUS. Springer, New York (2000)zbMATHCrossRefGoogle Scholar
  14. 14.
    Montgomery, D.C.: Design and Analysis of Experiments. Wiley, New York (2009)Google Scholar
  15. 15.
    Satterthwaite, F.E.: An Approximate Distribution of Estimates of Variance Components. Biometr. Bull. 2(6), 110–114 (1946)CrossRefGoogle Scholar
  16. 16.
    Giard, D.J., Aaronson, S.A., Todaro, G.J., Arnstein, P., Kersey, J.H., Dosik, H., Parks, W.P.: In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J. Natl. Cancer Inst. 51(5), 1417–1423 (1973)Google Scholar
  17. 17.
    Fogh, J., Trempe, G.: Human tumor cells in vitro. In: Fogh, J. (ed.). Academic Press, New York (1975)Google Scholar
  18. 18.
    Ryan, M.J., Johnson, G., Kirk, J., Furstenberg, S.M., Zager, R.A., Torok-Storb, B.: HK-2: an immortalized proximal tubule epithelial cell line from normal adult human kidney. Kidney Int. 45(1), 48–57 (1994)CrossRefGoogle Scholar
  19. 19.
    Ross, D.T., Scherf, U., Eisen, M.B., Perou, C.M., Rees, C., Spellman, P., Iyer, V., Jeffrey, S.S., Van de Rijn, M., Waltham, M., Pergamenschikov, A., Lee, J.C.F., Lashkari, D., Shalon, D., Myers, T.G., Weinstein, J.N., Botstein, D., Brown, P.O.: Systematic variation in gene expression patterns in human cancer cell lines. Nat. Genet. 24, 227–235 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Niccolò Bassani
    • 1
  • Federico Ambrogi
    • 1
  • Cristina Battaglia
    • 1
  • Elia Biganzoli
    • 1
  1. 1.University of MilanItaly

Personalised recommendations