Advertisement

Biostatistics Meets Bioinformatics in Integrating Information from Highdimensional Heterogeneous Genomic Data: Two Examples from Rare Genetic Diseases and Infectious Diseases

  • Clelia Di Serio
  • Danilo Pellin
  • Alessandro Ambrosi
  • Ingrid Glad
  • Arnoldo Frigessi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7548)

Abstract

Understanding genetic information to code and interpret disease phenotypes represents one major goal in modern biology. The challenge of integrating separate scientific vocabularies and insight is daunting because of the vastness and rapid evolution of the disciplines. New models and tools are needed to allow scientists to bridge knowledges, integrate concepts and information, and enable complex analysis. In this contribution we show two examples of datasets from Gene Therapy and Tubercolosis to highlight how integration between biostatistics and bioinformatics allows to gain information from the extremely large biogical databases produced with the new biotechnologies, such as Next Generation Sequencing (NGS) data.

Keywords

NGS gene therapy sRNA MTB hotspots comparative genomics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baum, C., Dullmann, J., Li, Z., Fehse, B., Meyer, J., et al.: Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 101, 2099–2114 (2003)CrossRefGoogle Scholar
  2. 2.
    Montini, E., Cesana, D., Schmidt, M., Sanvito, F., Ponzoni, M., et al.: Hematopoietic stem cell gene transfer in tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nature Biotechnology 24, 687–696 (2006)CrossRefGoogle Scholar
  3. 3.
    Ambrosi, A., Cattoglio, C., Di Serio, C.: Retroviral Integration Process in the Human Genome: Is It Really Non-Random? A New Statistical Approach. PLos Comp. Bio. 4(8) (2008)Google Scholar
  4. 4.
    Cattoglio, C., Pellin, D., Rizzi, E., Maruggi, G., Corti, G., Miselli, F., Sartori, D., Guffanti, A., Di Serio, C., Ambrosi, A., De Bellis, G., Mavilio, F.: High-definition mapping of retroviral integration sites identifies active regulatory elements in human multipotent hematopoietic progenitors. Blood 116(25), 5507–5510 (2010)CrossRefGoogle Scholar
  5. 5.
    Ambrosi, A., Glad, I.K., Pellin, D., Cattoglio, C., Mavilio, F., Di Serio, C., Frigessi, A.: Comparative retroviral DNA integration hotspots identify different behaviors of HIV and MLV (2011) (submitted)Google Scholar
  6. 6.
    Waters, L.S., Storz, G.: Regulatory RNAs in bacteria. Cell 136, 615–628 (2009)CrossRefGoogle Scholar
  7. 7.
    Levine, E., Hwa, T.: Small RNAs establish gene expression thresholds. Curr. Opin. Microbiol. 11, 574–579 (2008)CrossRefGoogle Scholar
  8. 8.
    Qi, J., Wang, B., Hao, B.I.: Whole proteome prokaryote phylogeny without sequence alignment: a K-string composition approach. J. Mol. Evol. 58, 1–11 (2004)CrossRefGoogle Scholar
  9. 9.
    Livny, J., Waldor, M.K.: Identification of small RNAs in diverse bacterial species. Curr. Opin. Microbiol. 10, 96–101 (2007)CrossRefGoogle Scholar
  10. 10.
    Arnvig, K.B., Young, D.B.: Identification of small RNAs in Mycobacterium tuberculosis. Mol. Microbiol. 73, 397–408 (2009)CrossRefGoogle Scholar
  11. 11.
    DiChiara, J.M., Contreras-Martinez, L.M., Livny, J., Smith, D., McDonough, K.A., et al.: Multiple small RNAs identified in Mycobacterium bovis BCG are also expressed in Mycobacterium tuberculosis and Mycobacterium smegmatis. Nucleic Acids Res. 38, 4067–4078 (2010)CrossRefGoogle Scholar
  12. 12.
    Fisher, R.A.: Statistical Methods for Research Workers (1925)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Clelia Di Serio
    • 1
  • Danilo Pellin
    • 1
  • Alessandro Ambrosi
    • 1
  • Ingrid Glad
    • 2
  • Arnoldo Frigessi
    • 3
  1. 1.University Centre of Statistics in the Biomedical Sciences, Vita-Salute San Raffaele UniversityItaly
  2. 2.Department of MathematicsUniversity of OsloNorway
  3. 3.Department of BiostatisticsUniversity of OsloNorway

Personalised recommendations