Supporting the Design, Communication and Management of Bioinformatic Protocols through the Leaf Tool

  • Francesco Napolitano
  • Roberto Tagliaferri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7548)


In Bioinformatic studies, a prototypical approach is common practice when dealing with data analysis. While the source code of such tools provides by itself a precious tool to replicate the analysis, this is in practice often hard to realize. In this paper we try to formalize the concept of protocol in bioinformatic data analysis and introduce the Leaf System, including a graph design language to define the main steps of the data analysis and a Python engine to automatically and efficiently apply it with support for the management of data resources. The tool is undergoing testing and documentation process and is available upon request from the authors.


bioinformatics protocols leaf python computational biology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Current Protocols in Bioinformatics. John Wiley & Sons, ISBN: 9780471250951, doi:10.1002/0471250953Google Scholar
  2. 2.
  3. 3.
    Cold Spring Harbor Protocols. Cold Spring Harbor Laboratory Press, ISSN: 1559-6095Google Scholar
  4. 4.
    Bruegge, B., Dutoit, A.H.: Object-Oriented Software Engineering, 2nd edn. Prentice Hall (2003) ISBN-10: 0130471100Google Scholar
  5. 5.
    Graphviz - Graph Visualization Software,
  6. 6.
    flex: The Fast Lexical Analyzer,
  7. 7.
    Bison - GNU parser generator,
  8. 8.
    Johnston, W.M., Hanna, J.R.P., Millar, R.J.: Advances in dataflow programming languages. ACM Computing Surveys 36(1), 1–34 (2004) (retrieved February 16, 2011), doi:10.1145/1013208.1013209CrossRefGoogle Scholar
  9. 9.
    Hastings, P.J., Lupski, J.R., Rosenberg, S.M., Ira, G.: Mechanisms of change in gene copy number. Nature Reviews Genetics 10(8), 551–564 (2009), doi:10.1038/nrg2593; PMC 2864001. PMID 19597530CrossRefGoogle Scholar
  10. 10.
    Wang, K., Li, M., Hadley, D., Liu, R., Glessner, J., Grant, S., Hakonarson, H., Bucan, M.: PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Research 17, 1665–1674 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Francesco Napolitano
    • 1
  • Roberto Tagliaferri
    • 1
  1. 1.Dpt. of Computer ScienceUniversity of SalernoFiscianoItaly

Personalised recommendations