Advertisement

Self-similarity in Physiological Time Series: New Perspectives from the Temporal Spectrum of Scale Exponents

  • Paolo Castiglioni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7548)

Abstract

Most physiological time series have self-similar properties which reflect the functioning of physiological control mechanisms. Self-similarity is usually assessed by detrended fluctuation analysis (DFA) assuming that mono- or bi-fractal models generate the self-similar dynamics. Our group recently proposed a new DFA approach describing self-similarity as a continuous temporal spectrum of coefficients, thus not assuming that “lumped-parameter” fractal models generate the data. This paper reviews the rationale for calculating a spectrum of DFA coefficients and applies this method on datasets of signals whose self-similarity has been extensively studied in the past. The first dataset consists of six electroencephalographic (EEG) derivations collected in a healthy volunteer. The second dataset consists of cardiac intervals and diastolic blood pressures recorded in 60 volunteers at different levels of cardiac sympatho/vagal balance. Results reveal the limits of the traditional “lumped-parameter” approach, and provide information on the role of autonomic outflows in determining cardiovascular self-similarity.

Keywords

Fractals Detrended Fluctuation Analysis EEG Heart Rate Variability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldberger, A.L.: Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet 347(9011), 1312–1314 (1996)CrossRefGoogle Scholar
  2. 2.
    Hurst, H.E.: Long Term Storage Capacity of Reservoirs. Transactions of the American Society of Civil Engineers 116, 770–799 (1951)Google Scholar
  3. 3.
    Feller, W.: The Asymptotic Distribution of the Range of Sums of Independent Random Variables. The Annals of Mathematical Statistics 22(3), 427–432 (1951)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Mandelbrot, B.B., Wallis, J.R.: Some Long-Run Properties of Geophysical Records. Water Resour. Res. 5, 321–340 (1969)CrossRefGoogle Scholar
  5. 5.
    Eke, A., Herman, P., Bassingthwaighte, J.B., Raymond, G.M., Percival, D.B., Cannon, M., Balla, I., Ikrenyi, C.: Physiological time series: distinguishing fractal noises from motions. Pflugers Arch. 439, 403–415 (2000)CrossRefGoogle Scholar
  6. 6.
    Eke, A., Herman, P., Kocsis, L., Kozak, L.R.: Fractal characterization of complexity in temporal physiological signals. Physiol. Meas. 23, R1–R38 (2002)CrossRefGoogle Scholar
  7. 7.
    Castiglioni, P., Parati, G., Civijian, A., Quintin, L., Di Rienzo, M.: Local scale exponents of blood pressure and heart rate variability by detrended fluctuation analysis: effects of posture, exercise, and aging. IEEE Trans. Biomed. Eng. 56, 675–684 (2009)CrossRefGoogle Scholar
  8. 8.
    Peng, C.K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., Goldberger, A.L.: Mosaic organization of DNA nucleotides. Phys. Rev. E. Stat. Phys. Plasmas. Fluids Relat. Interdiscip. Topics 49, 1685–1689 (1994)CrossRefGoogle Scholar
  9. 9.
    Tulppo, M.P., Kiviniemi, A.M., Hautala, A.J., Kallio, M., Seppanen, T., Makikallio, T.H., Huikuri, H.V.: Physiological background of the loss of fractal heart rate dynamics. Circulation 112, 314–319 (2005)CrossRefGoogle Scholar
  10. 10.
    Schulz, S., Koschke, M., Bar, K.J., Voss, A.: The altered complexity of cardiovascular regulation in depressed patients. Physiol. Meas. 31, 303–321 (2010)CrossRefGoogle Scholar
  11. 11.
    Busha, B.F.: Exercise modulation of cardiorespiratory variability in humans. Respir. Physiol. Neurobiol. 172, 72–80 (2010)CrossRefGoogle Scholar
  12. 12.
    Abasolo, D., Hornero, R., Escudero, J., Espino, P.: A study on the possible usefulness of detrended fluctuation analysis of the electroencephalogram background activity in Alzheimer’s disease. IEEE Trans. Biomed. Eng. 55, 2171–2179 (2008)CrossRefGoogle Scholar
  13. 13.
    Chang, S., Hsyu, M.C., Cheng, H.Y., Hsieh, S.H., Lin, C.: Synergic co-activation in forearm pronation. Ann. Biomed. Eng. 36, 2002–2018 (2008)CrossRefGoogle Scholar
  14. 14.
    Hausdorff, J.M.: Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking. Hum. Mov. Sci. 26, 555–589 (2007)CrossRefGoogle Scholar
  15. 15.
    Ferree, T.C., Hwa, R.C.: Power-law scaling in human EEG: relation to Fourier power spectrum. Neurocomputing 52-54, 755–761 (2003)CrossRefGoogle Scholar
  16. 16.
    Abasolo, D., Hornero, R., Escudero, J., Espino, P.: A study on the possible usefulness of detrended fluctuation analysis of the electroencephalogram background activity in Alzheimer’s disease. IEEE Trans. Biomed. Eng. 55, 2171–2179 (2008)CrossRefGoogle Scholar
  17. 17.
    Jospin, M., Caminal, P., Jensen, E.W., Litvan, H., Vallverdu, M., Struys, M.M., Vereecke, H.E., Kaplan, D.T.: Detrended fluctuation analysis of EEG as a measure of depth of anesthesia. IEEE Trans. Biomed. Eng. 54, 840–846 (2007)CrossRefGoogle Scholar
  18. 18.
    Castiglioni, P., Pugnetti, L., Garegnani, M., Mailland, E., Carabalona, R.: On the self-affinity of the electroencephalogram: evaluation of a whole spectrum of scale coefficients by detrended fluctuations analysis. In: Dössel, O., Schlegel, W.C. (eds.) WC 2009, 4th edn. IFMBE Proceedings, vol. 25, pp. 651–654 (2009)Google Scholar
  19. 19.
    Peng, C.K., Havlin, S., Hausdorff, J.M., Mietus, J.E., Stanley, H.E., Goldberger, A.L.: Fractal mechanisms and heart rate dynamics. Long-range correlations and their breakdown with disease. J. Electrocardiol. 28, 59–65 (1995)CrossRefGoogle Scholar
  20. 20.
    Absil, P., Sepulchre, R., Bilge, A., Gérard, P.: Nonlinear analysis of cardiac rhythm fluctuations using DFA method. Physica A: Statistical Mechanics and its Applications 272, 235–244 (1999)CrossRefGoogle Scholar
  21. 21.
    Lombardi, F., Sandrone, G., Mortara, A., Torzillo, D., La Rovere, M.T., Signorini, M.G., Cerutti, S., Malliani, A.: Linear and nonlinear dynamics of heart rate variability after acute myocardial infarction with normal and reduced left ventricular ejection fraction. Am. J. Cardiol. 77, 1283–1288 (1996)CrossRefGoogle Scholar
  22. 22.
    Makikallio, T.H., Hoiber, S., Kober, L., Torp-Pedersen, C., Peng, C.K., Goldberger, A.L., Huikuri, H.V.: Fractal analysis of heart rate dynamics as a predictor of mortality in patients with depressed left ventricular function after acute myocardial infarction. TRACE Investigators. TRAndolapril Cardiac Evaluation. Am. J. Cardiol. 83, 836–839 (1999)CrossRefGoogle Scholar
  23. 23.
    Huikuri, H.V., Makikallio, T.H., Peng, C.K., Goldberger, A.L., Hintze, U., Moller, M.: Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation 101, 47–53 (2000)CrossRefGoogle Scholar
  24. 24.
    Schulz, S., Koschke, M., Bar, K.J., Voss, A.: The altered complexity of cardiovascular regulation in depressed patients. Physiol. Meas. 31, 303–321 (2010)CrossRefGoogle Scholar
  25. 25.
    Castiglioni, P., Parati, G., Di Rienzo, M., Carabalona, R., Cividjian, A., Quintin, L.: Scale exponents of blood pressure and heart rate during autonomic blockade as assessed by detrended fluctuation analysis. J. Physiol. 589, 355–369 (2011)CrossRefGoogle Scholar
  26. 26.
    Berger, R.D., Saul, J.P., Cohen, R.J.: Transfer function analysis of autonomic regulation. Am. J Physiol. 256, H142–H152 (1989)Google Scholar
  27. 27.
    Levy, M.N., Yang, T., Wallick, D.W.: Assessment of beat-by-beat control of heart rate by the autonomic nervous system: molecular biology technique are necessary, but not sufficient. J. Cardiovasc. Electrophysiol. 4, 183–193 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Paolo Castiglioni
    • 1
  1. 1.Fondazione Don C. GnocchiMilanItaly

Personalised recommendations