Advertisement

DEEN: A Simple and Fast Algorithm for Network Community Detection

  • Pavol Jancura
  • Dimitrios Mavroeidis
  • Elena Marchiori
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7548)

Abstract

This paper introduces an algorithm for network community detection called DEEN, (Delete Edges and Expand Nodes) consisting of two simple steps. First edges of the graph estimated to connect different clusters are detected and removed, next the resulting graph is used for generating communities by expanding seed nodes.

DEEN, uses as parameters the minimum and maximum allowed size of a cluster, and a resolution parameter whose value influences the number of removed edges. Application of DEEN, to the budding yeast protein network for detecting functional protein complexes indicates its capability to identify clusters containing proteins with the same functional category, improving on MCL, a popular state-of-the-art method for functional protein complex detection. Moreover, application of DEEN, to two popular benchmark networks results in the detection of accurate communities, substantiating the effectiveness of the proposed method in diverse domains.

Keywords

Community detection protein interaction networks graph sparsification heuristic search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alamgir, M., von Luxburg, U.: Multi-agent random walks for local clustering on graphs. In: Proceedings of the 2010 IEEE International Conference on Data Mining, ICDM 2010, pp. 18–27. IEEE Computer Society, Washington, DC (2010)Google Scholar
  2. 2.
    Altaf-Ul-Amin, M., Shinbo, Y., Mihara, K., Kurokawa, K., Kanaya, S.: Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics 7(1) (2006)Google Scholar
  3. 3.
    Bader, G.D., Donaldson, I., Wolting, C., Ouellette, B.F.F., Pawson, T., Hogue, C.W.V.: Bind–the biomolecular interaction network database. Nucleic Acids Res. 29(1), 242–245 (2001)CrossRefGoogle Scholar
  4. 4.
    Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient algorithms for large-scale local triangle counting. TKDD 4(3) (2010)Google Scholar
  5. 5.
    Brohee, S., van Helden, J.: Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics 7(1), 488+ (2006)CrossRefGoogle Scholar
  6. 6.
    Bu, D., Zhao, Y., Cai, L., Xue, H., Zhu, X., Lu, H., Zhang, J., Sun, S., Ling, L., Zhang, N., Li, G., Chen, R.: Topological structure analysis of the protein-protein interaction network in budding yeast. Nucl. Acids Res. 31(9), 2443–2450 (2003)CrossRefGoogle Scholar
  7. 7.
    Dunn, R., Dudbridge, F., Sanderson, C.: The Use of Edge-Betweenness Clustering to Investigate Biological Function in Protein Interaction Networks. BMC Bioinformatics 6(1), 39+ (2005)Google Scholar
  8. 8.
    Enright, A.J., Van Dongen, S., Ouzounis, C.A.: An efficient algorithm for large-scale detection of protein families. Nucleic Acids Research 30, 1575–1584 (2002)CrossRefGoogle Scholar
  9. 9.
    Fortunato, S.: Community detection in graphs. Physics Reports 486, 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fung, W.S., Hariharan, R., Harvey, N.J., Panigrahi, D.: A general framework for graph sparsification. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, STOC 2011, pp. 71–80. ACM, New York (2011)Google Scholar
  11. 11.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America 99(12), 7821–7826 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Jancura, P., Marchiori, E.: Dividing protein interaction networks for modular network comparative analysis. Pattern Recognition Letters 31(14), 2083–2096 (2010)CrossRefGoogle Scholar
  13. 13.
    Jancura, P., Marchiori, E.: Detecting high quality complexes in a PPI network by edge deletion and node expansion. In: CIBB (2011)Google Scholar
  14. 14.
    Jiang, P., Singh, M.: SPICi: a fast clustering algorithm for large biological networks. Bioinformatics 26(8), 1105–1111 (2010)CrossRefGoogle Scholar
  15. 15.
    Li, X., Wu, M., Kwoh, C.K., Ng, S.K.: Computational approaches for detecting protein complexes from protein interaction networks: a survey. BMC Genomics 11(suppl. 1), S3+ (2010)CrossRefGoogle Scholar
  16. 16.
    von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S.G., Fields, S., Bork, P.: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399–403 (2002)CrossRefGoogle Scholar
  17. 17.
    Mete, M., Tang, F., Xu, X., Yuruk, N.: A structural approach for finding functional modules from large biological networks. BMC Bioinformatics 9(S-9) (2008)Google Scholar
  18. 18.
    Molloy, M., Reed, B.A.: A critical point for random graphs with a given degree sequence. Random Struct. Algorithms 6(2/3), 161–180 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proceedings of the National Academy of Sciences of the United States of America 101(9), 2658–2663 (2004)CrossRefGoogle Scholar
  20. 20.
    Satuluri, V., Parthasarathy, S., Ruan, Y.: Local graph sparsification for scalable clustering. In: Proceedings of the 2011 International Conference on Management of Data, SIGMOD 2011, pp. 721–732. ACM, New York (2011)Google Scholar
  21. 21.
    Ucar, D., Asur, S., Catalyurek, U., Parthasarathy, S.: Improving Functional Modularity in Protein-Protein Interactions Graphs Using Hub-Induced Subgraphs. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 371–382. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Van Dongen, S.: Graph Clustering Via a Discrete Uncoupling Process. SIAM Journal on Matrix Analysis and Applications 30(1), 121–141 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Xenarios, I., Salwínski, Ł., Duan, X.J., Higney, P., Kim, S.M., Eisenberg, D.: Dip, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Research 30(1), 303–305 (2002)CrossRefGoogle Scholar
  24. 24.
    Zachary, W.W.: An information flow model for conflict and fission in small groups. Journal of Anthropological Research 33, 452–473 (1977)Google Scholar
  25. 25.
    Zhao, Y., Levina, E., Zhu, J.: Community extraction for social networks. Proceedings of the National Academy of Sciences 108(18), 7321–7326 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pavol Jancura
    • 1
  • Dimitrios Mavroeidis
    • 1
  • Elena Marchiori
    • 1
  1. 1.Intelligent Systems , Institute for Computing and Information SciencesRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations