Skip to main content

Grain Refinement of AISI 304 SS Induced by Multiple Laser Shock Processing Impacts

  • Chapter
  • First Online:
Laser Shock Processing of FCC Metals

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 179))

  • 1749 Accesses

Abstract

This chapter describes the micro-structural evolution and grain refinement process of AISI 304 SS subjected to multiple LSP impacts by means of cross-sectional optical microscopy and transmission electron microscopy observations, and reveals the plastic strain-induced grain refinement mechanism of FCC materials with very low stacking fault energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lindemann, J., Buque, C., & Appel, F. (2006). Effect of shot peening on fatigue performance of a lamellar titanium aluminide alloy. Acta Materialia, 54(4), 1155–1164.

    Article  CAS  Google Scholar 

  2. Bhattacharjee, P. P., Ray, R. K., & Tsuji, N. (2009). Cold rolling and recrystallization textures of a Ni–5 at % W alloy. Acta Materialia, 57(7), 2166–2179.

    Article  CAS  Google Scholar 

  3. Venugopal, T., Rao, K. P., & Murty, B. S. (2007). Mechanical and electrical properties of Cu–Ta nanocomposites prepared by high-energy ball milling. Acta Materialia, 55(13), 4439–4445.

    Article  CAS  Google Scholar 

  4. Lin, Y. M., Lu, J., Wang, L. P., Xu, T., & Xue, Q. J. (2006). Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel. Acta Materialia, 54(20), 5599–5605.

    Article  CAS  Google Scholar 

  5. Montross, C. S., Ye, L., Wei, T., Clark, G., & Mai, Y. W. (2002). Laser shock processing and its effects on microstructure and properties of metal alloys: A review. International Journal of Fatigue, 24, 1021–1036.

    Article  CAS  Google Scholar 

  6. Meyers, M. A., Gregori, F., Kad, B. K., Schneider, M. S., Kalantar, D. H., Remington, B. A., et al. (2003). Laser-induced shock compression of monocrystalline copper: Characterization and analysis. Acta Materialia, 51(5), 1211–1228.

    Article  CAS  Google Scholar 

  7. Zhang, H., & Yu, C. Y. (1998). Laser shock processing of 2024–T62 aluminum alloy. Materials Science and Engineering A, 257, 322–327.

    Article  Google Scholar 

  8. Zhang, Y. K., Hu, C. L., Cai, L., Yang, J. C., & Zhang, X. R. (2001). Mechanism of improvement on fatigue life of metal by laser-excited shock waves. Applied Physics A, 72(2), 113–116.

    Article  CAS  Google Scholar 

  9. Yilbas, B. S., Shuja, S. Z., Arif, A., & Gondal, M. A. (2003). Laser-shock processing of steel. Journal of Materials Processing Technology, 135(1), 6–17.

    Article  CAS  Google Scholar 

  10. Srinivasan, S., Garcia, D. B., Gean, M. C., Murthy, H., & Farris, T. N. (2009). Fretting fatigue of laser shock peened Ti–6Al–4 V. Tribology International, 42(9), 1324–1329.

    Article  CAS  Google Scholar 

  11. Nikitin, I., & Altenberger, I. (2007). Comparison of the fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic stainless steel AISI 304 in the temperature range 25–600 °C. Materials Science and Engineering A, 465(1–2), 176–182.

    Article  Google Scholar 

  12. Peyre, P., Scherpereel, X., Berthe, L., Carboni, C., Fabbro, R., Béranger, G., et al. (2000). Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance. Materials Science and Engineering A, 280(2), 294–302.

    Article  Google Scholar 

  13. Nikitin, I., Scholtes, B., Maier, H. J., & Altenberger, I. (2004). High temperature fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic steel AISI 304. Scripta Materialia, 50(10), 1345–1350.

    Article  CAS  Google Scholar 

  14. Sano, Y. J., Obata, M., Kubo, T., Mukai, N., Yoda, M., Masaki, K., et al. (2006). Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating. Materials Science and Engineering A, 417(1–2), 334–340.

    Article  Google Scholar 

  15. Mordyuk, B. N., Milman, Y. V., Iefimov, M. O., Prokopenko, G. I., Silberschmidt, V. V., Danylenko, M. I., et al. (2008). Characterization of ultrasonically peened and laser-shock peened surface layers of AISI 321 stainless steel. Surface and Coatings Technology, 202(19), 4875–4883.

    Article  CAS  Google Scholar 

  16. Masse, J. E., & Barreau, G. (1995). Surface modification by laser induced shock waves. Surface Engineering, 11, 131–142.

    CAS  Google Scholar 

  17. Ding, K., & Ye, L. (2003). Three-dimensional dynamic finite element analysis of multiple laser shock peening processes. Surface Engineering, 19(5), 351–358.

    Article  CAS  Google Scholar 

  18. Chu, J. P., Rigsbee, J. M., Banas′, G., & Elsayed-Ali, H. E. (1999). Laser-shock processing effects on surface microstructure and mechanical properties of low carbon steel. Materials Science and Engineering A, 260, 260–268.

    Article  Google Scholar 

  19. Lu, J. Z., Luo, K. Y., Zhang, Y. K., Cui, C. Y., Sun, G. F., Zhou, J. Z., et al. (2010). Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts. Acta Materialia, 58(11), 3984–3994.

    Article  CAS  Google Scholar 

  20. Tan, Y., Wu, G., Yang, J. M., & Pan, T. (2004). Laser shock peening on fatigue crack growth behavior of aluminum alloy. Fatigue and Fracture of Engineering Materials and Structures, 27(8), 649–656.

    Article  CAS  Google Scholar 

  21. Arif, A. F. M. (2003). Numerical prediction of plastic deformation and residual stresses induced by laser shock processing. Journal of Materials Processing Technology, 136, 120–138.

    Article  Google Scholar 

  22. Tao, N. R., Wang, Z. B., Tong, W. P., Sui, M. L., Lu, J., & Lu, K. (2002). An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Materialia, 50(18), 4603–4616.

    Article  CAS  Google Scholar 

  23. Sun, H. Q., Shi, Y. N., Zhang, M. X., & Lu, K. (2007). Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy. Scripta Mateialia, 55, 975–982.

    CAS  Google Scholar 

  24. Wen, M., Liu, G., Gu, J. F., Guan, W. M., & Lu, J. (2009). Dislocation evolution in titanium during surface severe plastic deformation. Applied Surface Science, 255(12), 6097–6102.

    Article  CAS  Google Scholar 

  25. Tao, N. R., & Lu, K. (2009). Nanoscale structural refinement via deformation twinning in face-centered cubic metals. Scripta Materialia, 60(12), 1039–1043.

    Article  CAS  Google Scholar 

  26. Wu, X., Tao, N., Hong, Y., Liu, G., Xu, B., Lu, J., et al. (2005). Strain-induced grain refinement of cobalt during surface mechanical attrition treatment. Acta Materialia, 53(3), 681–691.

    Article  CAS  Google Scholar 

  27. Zhang, H. W., Hei, Z. K., Liu, G., Lu, J., & Lu, K. (2003). Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Materialia, 51(7), 1871–1881.

    Article  CAS  Google Scholar 

  28. Eddahbi, M., Del Valle, J. A., P’erez-Prado, M. T., & Ruano, O. A. (2005). Comparison of the microstructure and thermal stability of an AZ31 alloy processed by ECAP and large strain hot rolling. Materials Science and Engineering A, 410–411, 308–311.

    Article  Google Scholar 

  29. Wang, Y. B., Louie, M., Cao, Y., Liao, X. Z., Li, H. J., Ringer, S. P., et al. (2010). High-pressure torsion induced microstructural evolution in a hexagonal close-packed Zr alloy. Scripta Materialia, 62(4), 214–217.

    Article  CAS  Google Scholar 

  30. Wang, K., Tao, N. R., Liu, G., Lu, J., & Lu, K. (2006). Plastic strain-induced grain refinement at the nanometer scale in copper. Acta Materialia, 54(16), 5281–5291.

    Article  CAS  Google Scholar 

  31. Zhang, X. C., Zhang, Y. K., Lu, J. Z., Xuan, F. Z., Wang, Z. D., & Tu, S. D. (2010). Improvement of fatigue life of Ti-6Al-4 V alloy by laser shock peening. Materials Science and Engineering A, 527(15), 3411–3415.

    Article  Google Scholar 

  32. Belyakov, A., Tsuzaki, K., Miura, H., & Sakai, T. (2003). Effect of initial microstructures on grain refinement in a stainless steel by large strain deformation. Acta Materialia, 51(3), 847–861.

    Article  CAS  Google Scholar 

  33. Kuhlmann-Wilsdorf, D., & Van der Merwe, J. H. (1982). Theory of dislocation cell size in deformed metals. Materials Science and Engineering, 55, 79–83.

    Article  Google Scholar 

  34. Schino, A. D., & Kenny, J. M. (2003). Grain size dependence of the fatigue behavior of a ultrafine-grained AISI 304 stainless steel. Materials Letters, 57(21), 3182–3185.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiyu Luo .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, Y., Lu, J., Luo, K. (2013). Grain Refinement of AISI 304 SS Induced by Multiple Laser Shock Processing Impacts. In: Laser Shock Processing of FCC Metals. Springer Series in Materials Science, vol 179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35674-2_8

Download citation

Publish with us

Policies and ethics