Skip to main content

Mechanical Properties of AISI 304 SS and its Welded Joint Subjected to Laser Shock Processing

  • Chapter
  • First Online:
Laser Shock Processing of FCC Metals

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 179))

  • 1769 Accesses

Abstract

This chapter presents the effects of a single LSP impact on the nano-hardness, elastic modulus, residual stress, and phase transformation of AISI 304 SS. Further studies of different LSP paths on the mechanical properties and fracture morphology of the laser welded AISI 304 SS joint are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Milad, M., Zreiba, N., Elhalouani, F., & Baradai, C. (2008). The effect of cold work on structure and properties of AISI 304 stainless steel. Journal of Materials Processing Technology, 203(1–3), 80–85.

    Article  CAS  Google Scholar 

  2. Lee, H. T., & Jeng, S. L. (2001). Characteristics of dissimilar welding of alloy 690 to 304L stainless steel. Science and Technology of Welding and Joining, 6(4), 225–234.

    Article  CAS  Google Scholar 

  3. Jamshidi, A. H., Farzadi, A., Serajzadeh, S., & Kokabi, A. H. (2009). Theoretical and experimental study of microstructures and weld pool geometry during GTAW of 304 stainless steel. International Journal of Advanced Manufacturing Technology, 42(11), 1043–1051.

    Article  Google Scholar 

  4. Lu, S. P., Fujii, H., Nogi, K., & Sato, T. (2007). Effect of oxygen content in He-O2 shielding gas on weld shape in ultra-deep penetration TIG. Science and Technology of Welding and Joining, 12(8), 689–695.

    Article  CAS  Google Scholar 

  5. Lima, A. S., Nascimento, A. M., Abreu, H. F. G., & Lima-Neto, P. (2005). Sensitization evaluation of the austenitic stainless steel AISI 304L, 316L, 321 and 347. Journal of Materials Science, 40(1), 139–144.

    Article  CAS  Google Scholar 

  6. Muthupandi, V., Bala, S. P., Seshadri, S. K., & Sundaresan, S. (2003). Effect of weld metal chemistry and heat input on the structure and properties of duplex stainless steel welds. Materials Science and Engineering A, 358(1–2), 9–16.

    Article  Google Scholar 

  7. Chen, Y. B., Lei, Z. L., Li, L. Q., & Wu, L. (2006). Experimental study on welding characteristics of CO2 laser TIG hybrid welding process. Science and Technology of Welding and Joining, 11(4), 403–411.

    Article  CAS  Google Scholar 

  8. Yan, J., Gao, M., & Zeng, X. Y. (2010). Study on microstructure and mechanical properties of 304 stainless steel joints by TIG, laser and laser-TIG hybrid welding. Optics and Lasers in Engineering, 48(4), 512–517.

    Article  Google Scholar 

  9. Huang, Q., Hagstroem, J., Skoog, H., & Kullberg, G. (1991). Effect of laser parameter variation on sheet metal welding. International Journal of Joining Materials, 3(3), 79–88.

    Google Scholar 

  10. Padmanaban, G., & Balasubramanian, V. (2010). Optimization of laser beam welding process parameters to attain maximum tensile strength in AZ31B magnesium alloy. Optics and Lasers in Engineering, 42(8), 1253–1260.

    Article  CAS  Google Scholar 

  11. Qi, J. F., Niu, Z., Zhang, D. Y., & Zuo, T. C. (2008). Synthesis of SiC/Ni composite coatings by laser cladding and property of erosion resistance. Chinese Journal of Lasers, 35(1), 297–302. (in Chinese).

    CAS  Google Scholar 

  12. Danny, P., & Pal, M. (2008). Q-switch Nd: YAG laser welding of AISI 304 stainless steel foils. Materials Science and Engineering A, 486(1–2), 680–685.

    Google Scholar 

  13. Park, S. H. C., Sato, Y. S., Kokawa, H., Okamoto, K., Hirano, S., & Inagaki, M. (2005). Microstructural characterisation of stir zone containing residual ferrite in friction stir welded 304 austenitic stainless steel. Science and Technology of Welding and Joining, 10(5), 550–556.

    Article  CAS  Google Scholar 

  14. Kawahito, Y., Mizutani, M., & Katayama, S. (2009). High quality welding of stainless steel with 10 kW high power fiber laser. Science and Technology of Welding and Joining, 14(4), 288–294.

    Article  CAS  Google Scholar 

  15. Montross, C. S., Ye, L., Wei, T., Clark, G., & Mai, Y. W. (2002). Laser shock processing and its effects on microstructure and properties of metal alloys: A review. International Journal of Fatigue, 24, 1021–1036.

    Article  CAS  Google Scholar 

  16. Meyers, M. A., Gregori, F., Kad, B. K., Schneider, M. S., Kalantar, D. H., Remington, B. A., et al. (2003). Laser-induced shock compression of monocrystalline copper: Characterization and analysis. Acta Materialia, 51(5), 1211–1228.

    Article  CAS  Google Scholar 

  17. Sano, Y. J., Obata, M., Kubo, T., Mukai, N., Yoda, M., Masaki, K., et al. (2006). Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating. Materials Science and Engineering A, 417(1–2), 334–340.

    Article  Google Scholar 

  18. Nikitin, I., Scholtes, B., Maier, H. J., & Altenberger, I. (2004). High temperature fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic steel AISI 304. Scripta materialia, 50(10), 1345–1350.

    Article  CAS  Google Scholar 

  19. Nikitin, I., & Altenberger, I. (2007). Comparison of the fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic stainless steel AISI 304 in the temperature range 25–600 °C. Materials Science and Engineering A, 465(1–2), 176–182.

    Article  Google Scholar 

  20. Turski, M., Clitheroe, S., Evans, A. D., Rodopoulos, C., Hughes, D. J., & Withers, P. J. (2010). Engineering the residual stress state and microstructure of stainless steel with mechanical surface treatments. Applied Physics A, 99(3), 549–556.

    Article  CAS  Google Scholar 

  21. Lu, J. Z., Luo, K. Y., Zhang, Y. K., Sun, G. F., Gu, Y. Y., Zhou, J. Z., et al. (2010). Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel. Acta Materialia, 58(16), 5354–5362.

    Article  CAS  Google Scholar 

  22. Oliver, W. C., & Pharr, G. M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7(6), 1564–1583.

    Article  CAS  Google Scholar 

  23. Wang, X. W., Wang, J. Y., Wu, P., & Zhang, H. W. (2004). The investigation of internal friction and elastic modulus in surface nanostructured materials. Materials Science and Engineering A, 370(1–2), 158–162.

    Article  Google Scholar 

  24. San, J. F., Wang, Z. C., Li, S. H., & Liu, J. J. (2006). Nano-hardness and wear properties of C-implanted Nylon 6. Surface and Coatings Technology, 200(18–19), 5245–5252.

    Article  CAS  Google Scholar 

  25. Bhatt, R. T., Choi, S. R., Cosgriff, L. M., Fox, D. S., & Lee, K. N. (2008). Impact resistance of uncoated SiC/SiC composites. Materials Science and Engineering A, 476(1–2), 20–28.

    Article  Google Scholar 

  26. Chen, X., Wang, R., Yao, N., Evans, A. G., Hutchinson, J. W., & Bruce, R. W. (2003). Foreign object damage in a thermal barrier system: Mechanisms and simulations. Materials Science and Engineering A, 352(1–2), 221–231.

    Article  Google Scholar 

  27. Hu, Y. X., & Yao, Z. Q. (2008). Overlapping rate effect on laser shock processing of 1045 steel by small spots with Nd: YAG pulsed laser. Surface and Coatings Technology, 202(8), 1517–1525.

    Article  CAS  Google Scholar 

  28. Altenberger, I., Scholtes, B., Martin, U., & Oettel, H. (1999). Cyclic deformation and near surface microstructures of shot peened or deep rolled austenitic stainless steel AISI 304. Materials Science and Engineering A, 264(1–2), 1–16.

    Article  Google Scholar 

  29. Wang, S. P., Li, Y. J., Yao, M., & Wang, R. Z. (1998). Compressive residual stress introduced by shot peening. Journal of Materials Processing Technology, 73(1–3), 64–73.

    Article  Google Scholar 

  30. Lindemann, J., Buque, C., & Appel, F. (2006). Effect of shot peening on fatigue performance of a lamellar titanium aluminide alloy. Acta Materialia, 54(4), 155–1164.

    Article  Google Scholar 

  31. Zhang, H. W., Hei, Z. K., Liu, G., Lu, J., & Lu, K. (2003). Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Materialia, 51(7), 1871–1881.

    Article  CAS  Google Scholar 

  32. De, A. K., Murdock, D. C., Mataya, M. C., Speer, J. G., & Matlock, D. K. (2004). Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction. Scripta Materialia, 50(12), 1445–1449.

    Article  CAS  Google Scholar 

  33. Mordyuk, B. N., Milman, Y. V., Iefimov, M. O., Prokopenko, G. I., Silberschmidt, V. V., Danylenko, M. I., et al. (2008). Characterization of ultrasonically peened and laser-shock peened surface layers of AISI 321 stainless steel. Surface and Coatings Technology, 202(19), 4875–4883.

    Article  CAS  Google Scholar 

  34. Belyakov, A., Tsuzaki, K., Miura, H., & Sakai, T. (2003). Effect of initial microstructures on grain refinement in a stainless steel by large strain deformation. Acta Materialia, 51(3), 847–861.

    Article  CAS  Google Scholar 

  35. Suś-Ryszkowska, M., Wejrzanowski, T., Pakiea, Z., & Kurzydłowski, K.J. (2004). Microstructure of ECAP severely deformed iron and its mechanical properties. Materials Science and Engineering: A 369(1–2), 151–156.

    Google Scholar 

  36. Murr, L. E., Moin, E., & Greulich, F. (1978). The contribution of deformation twins to yield stress: The Hall-Petch law for inter-twin spacing. Scripta Metallurgica, 12(11), 1031–1035.

    Article  CAS  Google Scholar 

  37. Zhang, X., Misra, A., Wang, H., Nastasi, M., Embury, J. D., Mitchell, T. E., et al. (2004). Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films. Applied Physics Letters, 84(7), 1096–1098.

    Article  CAS  Google Scholar 

  38. Sanders, P. G., Eastman, J. A., & Weertman, J. R. (1997). Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Materialia, 45(10), 4019–4025.

    Article  CAS  Google Scholar 

  39. Ding, K., & Ye, L. (2003). FEM simulation of two sided laser shock peening of thin sections of Ti-6Al-4 V alloy. Surface Engineering, 19, 127–133.

    Article  CAS  Google Scholar 

  40. Ahmed, S. M., Hokkirigawa, K., & Oba, R. (1994). Fatigue failure of SUS 304 caused by vibratory cavitation erosion. Wear, 177(2), 129–137.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiyu Luo .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, Y., Lu, J., Luo, K. (2013). Mechanical Properties of AISI 304 SS and its Welded Joint Subjected to Laser Shock Processing. In: Laser Shock Processing of FCC Metals. Springer Series in Materials Science, vol 179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35674-2_6

Download citation

Publish with us

Policies and ethics