Skip to main content

Grain Refinement of LY2 Al Alloys Induced by Multiple Laser Shock Processing Impacts

  • Chapter
  • First Online:
Laser Shock Processing of FCC Metals

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 179))

  • 1776 Accesses

Abstract

This chapter presents the effects of the multiple LSP impacts on the residual stresses in the depth direction, focusing especially on the change of micro-structure in different layers in the treated sample by multiple LSP impacts, and clearly reveals the underlying refinement mechanism of plastic deformation after multiple LSP impacts on LY2 Al alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meyers, M. A., Gregori, F., Kad, B. K., Schneider, M. S., Kalantar, D. H., Remington, B. A., et al. (2003). Laser-induced shock compression of monocrystalline copper: characterization and analysis. Acta Materialia, 51(5), 1211–1228.

    Article  CAS  Google Scholar 

  2. Zhang, H., & Yu, C. Y. (1998). Laser shock processing of 2024–T62 aluminum alloy. Materials Science and Engineering A, 257, 322–327.

    Article  Google Scholar 

  3. Montross, C. S., Ye, L., Wei, T., Clark, G., & Mai, Y. W. (2002). Laser shock processing and its effects on microstructure and properties of metal alloys: a review. International Journal of Fatigue, 24, 1021–1036.

    Article  CAS  Google Scholar 

  4. Zhang, Y. K., Hu, C. L., Cai, L., Yang, J. C., & Zhang, X. R. (2001). Mechanism of improvement on fatigue life of metal by laser-excited shock waves. Applied Physics A, 72(2), 113–116.

    Article  CAS  Google Scholar 

  5. Yilbas, B. S., Shuja, S. Z., Arif, A., & Gondal, M. A. (2003). Laser-shock processing of steel. Journal of Materials Processing Technology, 135(1), 6–17.

    Article  CAS  Google Scholar 

  6. Srinivasan, S., Garcia, D. B., Gean, M. C., Murthy, H., & Farris, T. N. (2009). Fretting fatigue of laser shock peened Ti–6Al–4 V. Tribology International, 42(9), 1324–1329.

    Article  CAS  Google Scholar 

  7. Lindemann, J., Buque, C., & Appel, F. (2006). Effect of shot peening on fatigue performance of a lamellar titanium aluminide alloy. Acta Materialia, 54(4), 1155–1164.

    Article  CAS  Google Scholar 

  8. Bhattacharjee, P. P., Ray, R. K., & Tsuji, N. (2009). Cold rolling and recrystallization textures of a Ni–5 at.% W alloy. Acta Materialia, 57(7), 2166–2179.

    Article  CAS  Google Scholar 

  9. Venugopal, T., Rao, K. P., & Murty, B. S. (2007). Mechanical and electrical properties of Cu–Ta nanocomposites prepared by high-energy ball milling. Acta Materialia, 55(13), 4439–4445.

    Article  CAS  Google Scholar 

  10. Lin, Y. M., Lu, J., Wang, L. P., Xu, T., & Xue, Q. J. (2006). Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel. Acta Materialia, 54(20), 5599–5605.

    Article  CAS  Google Scholar 

  11. Yang, C. H., Hodgson, P. D., & Liu, Q. C. (2008). Geometrical effects on residual stresses in 7050–T7451 aluminum alloy rods subject to laser shock peening. Journal of Materials Processing Technology, 201, 303–309.

    Article  CAS  Google Scholar 

  12. Luong, H., & Hill, M. R. (2008). The effects of laser peening on high-cycle fatigue in 7085–T7651 aluminum alloy. Materials Science and Engineering A, 477, 208–216.

    Article  Google Scholar 

  13. Gomez-Rosas, G., Rubio-Gonzalez, C., Ocaña, J. L., Molpeceres, C., Porro, J. A., Chi-Moreno, W., et al. (2005). High level compressive residual stresses produced in aluminum alloys by laser shock processing. Applied Surface Science, 252(4), 883–887.

    Article  CAS  Google Scholar 

  14. Rubio-González, C., Ocańa, J. L., Gomez-Rosas, G., Molpeceres, C., Paredes, M., Banderas, A., et al. (2004). Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061–T6 aluminum alloy. Materials Science and Engineering A, 386, 291–295.

    Article  Google Scholar 

  15. Rubio-González, C., Gomez-Rosas, G., Ocaña, J. L., Molpeceres, C., Banderas, A., Porro, J., et al. (2006). Effect of an absorbent overlay on the residual stress field induced by laser shock processing on aluminum samples. Applied Surface Science, 252(18), 6201–6205.

    Article  Google Scholar 

  16. Peyre, P., Fabbro, R., Merrien, P., & Lieurade, H. P. (1996). Laser shock processing of aluminum alloys. Application to high cycle fatigue behaviour. Materials Science and Engineering A, 210, 102–113.

    Article  Google Scholar 

  17. Masse, J. E., & Barreau, G. (1995). Surface modification by laser induced shock waves. Surface Engineering, 11, 131–142.

    CAS  Google Scholar 

  18. Ding, K., & Ye, L. (2003). Three-dimensional dynamic finite element analysis of multiple laser shock peening processes. Surface Engineering, 19(5), 351–358.

    Article  CAS  Google Scholar 

  19. Hu, Y. X., & Yao, Z. Q. (2008). Overlapping rate effect on laser shock processing of 1045 steel by small spots with Nd:YAG pulsed laser. Surface and Coatings Technology, 202, 1517–1525.

    Article  CAS  Google Scholar 

  20. Schino, A. D., & Kenny, J. M. (2003). Grain size dependence of the fatigue behaviour of a ultrafine-grained AISI 304 stainless steel. Materials Letters, 57(21), 3182–3185.

    Article  Google Scholar 

  21. Belyakov, A., Tsuzaki, K., Miura, H., & Sakai, T. (2003). Effect of initial microstructures on grain refinement in a stainless steel by large strain deformation. Acta Materialia, 51(3), 847–861.

    Article  CAS  Google Scholar 

  22. Tan, Y., Wu, G., Yang, J. M., & Pan, T. (2004). Laser shock peening on fatigue crack growth behavior of aluminum alloy. Fatigue and Fracture of Engineering Materials and Structures, 27(8), 649–656.

    Article  CAS  Google Scholar 

  23. Yilbas, B. S., & Arif, A. F. M. (2007). Laser shock processing of aluminum: Model and experimental study. Journal of Physics D, Applied Physics, 40, 6740–6747.

    Article  CAS  Google Scholar 

  24. Chen, M., Ma, E., Hemke, K. J., Sheng, H. W., Wang, Y. M., & Cheng, X. M. (2003). Deformation twinning in nanocrystalline aluminum. Science, 300, 1275–1277.

    Article  CAS  Google Scholar 

  25. Yamakov, V., Wolf, D., Phillpot, S. R., Mukherjee, A. K., & Gleiter, H. (2002). Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nature Materials, 1, 45–49.

    Article  CAS  Google Scholar 

  26. Wen, M., Liu, G., Gu, J. F., Guan, W. M., & Lu, J. (2009). Dislocation evolution in titanium during surface severe plastic deformation. Applied Surface Science, 255(12), 6097–6102.

    Article  CAS  Google Scholar 

  27. Tao, N. R., Wang, Z. B., Tong, W. P., Sui, M. L., Lu, J., & Lu, K. (2002). An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Materialia, 50(18), 4603–4616.

    Article  CAS  Google Scholar 

  28. Wang, Y. B., Louie, M., Cao, Y., Liao, X. Z., Li, H. J., Ringer, S. P., et al. (2010). High-pressure torsion induced microstructural evolution in a hexagonal close-packed Zr alloy. Scripta Materials, 62(4), 214–217.

    Article  CAS  Google Scholar 

  29. Wu, X., Tao, N., Hong, Y., Liu, G., Xu, B., Lu, J., et al. (2005). Strain-induced grain refinement of cobalt during surface mechanical attrition treatment. Acta Materialia, 53(3), 681–691.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinzhong Lu .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, Y., Lu, J., Luo, K. (2013). Grain Refinement of LY2 Al Alloys Induced by Multiple Laser Shock Processing Impacts. In: Laser Shock Processing of FCC Metals. Springer Series in Materials Science, vol 179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35674-2_4

Download citation

Publish with us

Policies and ethics