Skip to main content

Tensile Properties and Fatigue Lives of LY2 Al Alloy Subjected to Laser Shock Processing

  • Chapter
  • First Online:
  • 1738 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 179))

Abstract

This chapter presents the effects of strain rate on the tensile properties and fracture morphologies of LY2 Al alloy subjected to LSP. Special attentions are paid to the effects of LSP processing parameters on the fatigue life and fracture morphology. In addition, the influence mechanisms of different LSP parameters on Al alloy are systematically revealed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yang, C. H., Hodgson, P. D., & Liu, Q. C. (2008). Geometrical effects on residual stresses in 7050–T7451 Al alloy rods subject to laser shock peening. Journal of Materials Processing Technology, 201, 303–309.

    Article  CAS  Google Scholar 

  2. Zhang, H., & Yu, C. Y. (1998). Laser shock processing of 2024–T62 Al alloy. Materials Science and Engineering A, 257, 322–327.

    Article  Google Scholar 

  3. Montross, C. S., Ye, L., Wei, T., Clark, G., & Mai, Y. W. (2002). Laser shock processing and its effects on microstructure and properties of metal alloys: A review. International Journal of Fatigue, 24, 1021–1036.

    Article  CAS  Google Scholar 

  4. Zhang, Y. K., Hu, C. L., Cai, L., Yang, J. C., & Zhang, X. R. (2001). Mechanism of improvement on fatigue life of metal by laser–excited shock waves. Applied Physics A, 72(2), 113–116.

    Article  CAS  Google Scholar 

  5. Rubio–González, C., Ocaña, J. L., & Gomez–Rosas, G. (2004). Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061–T6 Al alloy. Materials Science and Engineering A, 386, 291–295.

    Google Scholar 

  6. Zhang, X. C., Xu, B. S., & Wang, H. D. (2007). Residual stress distributions within high–temperature coatings. Surface and Coatings Technology, 201, 6660–6662.

    Article  CAS  Google Scholar 

  7. Zhang, X. C., Xu, B. S., & Wang, H. D. (2008). Effect of graded interlayer on the mode I edge delamination by residual stresses in multilayer coating–based systems. Applied Surface Science, 254, 1881–1889.

    Article  CAS  Google Scholar 

  8. Hu, Y. X., & Yao, Z. Q. (2008). Overlapping rate effect on laser shock processing of 1045 steel by small spots with Nd:YAG pulsed laser. Surface and Coatings Technology, 202, 1517–1525.

    Article  CAS  Google Scholar 

  9. Lavender, C. A., Hong, S. T., Smith, M. T., Johnson, R. T., & Lahrmanc, D. (2008). The effect of laser shock peening on the life and failure mode of a cold pilger die. Journal of Materials Processing Technology, 204, 486–491.

    Article  CAS  Google Scholar 

  10. Dane, C. B., Hackel, L. A., & Daly, J. (1997). Laser peening of metals–enabling laser technology. Advanced Material Processing, 5, 13–27.

    Google Scholar 

  11. Vaccari, J. A. (1992). Laser shocking extends fatigue life. American Machine, 6, 62–64.

    Google Scholar 

  12. Garcia–Bernal, M. A., Mishra, R. S., Verma, R., & Hernandez–Silva, D. (2009). High strain rate superplasticity in continuous cast Al–Mg alloys prepared via friction stir processing. Scripta. Materialia, 60(10), 850–853.

    Article  Google Scholar 

  13. Garcia–Infanta, J. M., Zhilyaev, A. P., Sharafutdinov, A., Ruano, O. A., & Carreno, F. (2009). An evidence of high strain rate superplasticity at intermediate homologous temperatures in an Al–Zn–Mg–Cu alloy processed by high–pressure torsion. Journal of Alloys and Compounds, 473, 163–166.

    Article  Google Scholar 

  14. Boyce, B. L., & Dilmore, M. F. (2009). The dynamic tensile behavior of tough, ultrahigh–strength steels at strain–rates from 0.0002 to 200 s−1. International Journal of Impact Engineering, 36, 263–271.

    Article  Google Scholar 

  15. Fan, G. J., Wang, G. Y., Choo, H., Liaw, P. K., Park, Y. S., Han, B. Q., et al. (2005). Scripta Material, 52, 929–933.

    Article  CAS  Google Scholar 

  16. Kaibyshev, R., Avtokratova, E., Apollonov, A., & Davies, R. (2006). High strain rate superplasticity in an Al–Mg–Sc–Zr alloy subjected to simple thermo mechanical processing. Scripta Materialia, 54, 2119–2124.

    Article  CAS  Google Scholar 

  17. Han, B. Q., Huang, J. Y., Zhu, Y. T., & Lavernia, E. J. (2006). Strain rate dependence of properties of cryomilled bimodal 5083 Al alloys. Acta Materialia, 54, 3015–3024.

    Article  CAS  Google Scholar 

  18. Kocks, U. F., & Mecking, H. (2003). Physics and phenomenology of strain hardening: The FCC case. Progress in Materials Science, 48(3), 171–273.

    Article  CAS  Google Scholar 

  19. Kapoor, R., & Chakravartty, J. K. (2007). Deformation behavior of an ultrafine–grained Al–Mg alloy produced by equal–channel angular pressing. Acta Materialia, 55(16), 5408–5418.

    Article  CAS  Google Scholar 

  20. Kuo, T. Y., & Lin, H. C. (2006). Effects of pulse level of Nd–YAG laser on tensile properties and formability of laser weldments in automotive Al alloys. Materials Science and Engineering A, 416(1–2), 281–289.

    Article  Google Scholar 

  21. Liu, C., Northwood, D. O., & Bhole, S. D. (2004). Tensile fracture behavior in CO2 laser beam welds of 7075–T6 Al alloy. Materials and Design, 25(7), 573–577.

    Article  CAS  Google Scholar 

  22. Schino, A. D., & Kenny, J. M. (2003). Grain size dependence of the fatigue behaviour of a ultrafine–grained AISI 304 stainless steel. Materials Letters, 57(21), 3182–3185.

    Article  Google Scholar 

  23. Lu, J. Z., Luo, K. Y., Zhang, Y. K., Cui, C. Y., Sun, G. F., Zhou, J. Z., et al. (2010). Grain refinement of LY2 Al alloy induced by ultra–high plastic strain during multiple laser shock processing impacts. Acta Materialia, 58(11), 3984–3994.

    Article  CAS  Google Scholar 

  24. Sakka, Y., Suzuki, T. S., Morita, K., Nakano, K., & Hiraga, K. (2001). Colloidal processing and superplastic properties of zirconia– and alumina–based nanocomposites. Scripta Materialia, 44(8–9), 2075–2078.

    Article  CAS  Google Scholar 

  25. Nascimento, F., Santos, T., Vilaça, P., Miranda, R. M., & Quintino, L. (2009). Microstructural modification and ductility enhancement of surfaces modified by FSP in Al alloys. Materials Science and Engineering A, 506(1–2), 16–22.

    Article  Google Scholar 

  26. Mckenzie, P. W. J., & Lapovok, R. (2010). ECAP with back pressure for optimum strength and ductility in Al alloy 6016. Part 2: Mechanical properties and texture. Acta Materialia., 58(9), 3212–3222.

    Article  CAS  Google Scholar 

  27. Csontos, A. A., & Starke, E. A. (2005). The effect of inhomogeneous plastic deformation on the ductility and fracture behavior of age hard enable Al alloys. International Journal of Plasticity, 21(6), 1097–1118.

    Article  CAS  Google Scholar 

  28. Gu, C. D., Lian, J. S., Jiang, Q., & Jiang, Z. H. (2007). Ductile–brittle–ductile transition in an electrodeposited 13 nanometer grain sized Ni–8.6 wt % Co alloy. Materials Science and Engineering A, 459, 75–81.

    Article  Google Scholar 

  29. Han, B. Q., Huang, J. Y., Zhu, Y. T., & Lavernia, E. J. (2006). Effect of strain rate on the ductility of a nanostructured Al alloy. Scripta Materialia, 541(6), 175–1180.

    Google Scholar 

  30. Dudrová, E., & Kabátová, M. (2008). Fractography of sintered iron and steels. Powder Metallurgy Progress, 8(2), 59–75.

    Google Scholar 

  31. Arpan, D., & Soumitra, T. (2008). Geometry of dimples and its correlation with mechanical properties in austenitic stainless steel. Scripta Materials, 59(9), 1014–1017.

    Article  Google Scholar 

  32. See, D. W., Dulaney, J. L., & Clauer, A. H. (2002). The air force manufacturing technology laser peening initiative. Surface Engineering, 18, 32–36.

    Article  CAS  Google Scholar 

  33. King, A., Steuwer, A., & Woodward, C. (2006). Effects of fatigue and fretting on residual stresses introduced by laser shock peening. Materials Science and Engineering A, 12, 435–436.

    Google Scholar 

  34. King, A., Evans, A. D., & Withers, P. J. (2005). The effect of fatigue on residual peening stresses in aerospace components. Materials Science Forum, 490–491, 340–345.

    Article  Google Scholar 

  35. Prevey, P., & Jayaraman, N. (2005). A design methodology to take credit for residual stresses in fatigue limited designs. Journal of ASTM International, 2(8), 61–76.

    Article  Google Scholar 

  36. Larsen, J. M., Worth, B. D., & Annis, C. G. (1996). An assessment of the role of near–threshold crack growth in high–cycle–fatigue life prediction of aerospace titanium alloys under turbine engine spectra: High cycle fatigue. International Journal of Fracture, 80, 237–255.

    Article  CAS  Google Scholar 

  37. Duo, P., Liu, J., & Dini, D. (2007). Evaluation and analysis of residual stresses due to foreign object damage. Mechanics of Materials, 39, 199–211.

    Article  Google Scholar 

  38. Nowell, D., Duo, P., & Stewart, I. F. (2003). Prediction of fatigue performance in gas turbine blades after foreign object damage. International Journal of Fatigue, 25, 963–969.

    Article  Google Scholar 

  39. Hu, Y. X., Yao, Z. Q., & Hu, J. (2006). 3–D FEM simulation of laser shock processing. Surface and Coatings Technology, 201, 1426–1435.

    Article  CAS  Google Scholar 

  40. Masse, J. E., & Barreau, G. (1995). Surface modification by laser induced shock waves. Surface Engineering, 11, 131–142.

    CAS  Google Scholar 

  41. Clauer, A. H., Holbrook, J. H., & Fairand, B. P. (1981). Effects of laser induced shock waves on metals. In M. A. Meyers & L. E. Murr (Eds.), Shock waves and high–strain–rate phenomena in metals (pp. 675–702). New York: Plenum Publishing Corporation.

    Chapter  Google Scholar 

  42. Fourier, J. (1990). Mechanical effects induced by shock waves generated by high–energy laser pulses. Material Manufacturing Processing, 5, 144–147.

    Google Scholar 

  43. Zhang, Z. P., Li, J., & Sun, Q. (2009). Two parameters describing cyclic hardening/softening behaviors of metallic materials. Journal of Materials Engineering and Performance, 18(3), 237–244.

    Article  Google Scholar 

  44. Scherpereel, X., Peyre, P., & Fabbro, R. (2005). Modifications of mechanical and electrochemical properties of stainless steels surfaces by laser shock processing. SPIE, 3097, 546–557.

    Article  Google Scholar 

  45. Peyre, P., Fabbro, R., Merrien, P., & Lieurade, H. P. (1996). Laser shock processing of Al alloys. Application to high cycle fatigue behaviour. Materials Science and Engineering A, 210, 102–113.

    Article  Google Scholar 

  46. Chien, W. Y., Pan, J., Close, D., & Ho, S. (2005). Fatigue analysis of crankshaft sections under bending with consideration of residual stresses. International Journal of Fatigue, 27, 1–19.

    Article  CAS  Google Scholar 

  47. Farrahi, G. H., Lebrun, J. L., & Couratin, D. (1995). Effect of shot peening on residual stress and fatigue life of spring steel. Fatigue and Fracture of Engineering Materials and Structures, 18, 211–220.

    Article  CAS  Google Scholar 

  48. Guagliano, M., & Vergani, L. (2004). An approach for prediction of fatigue strength of shot peened components. Engineering Fracture Mechanics, 71, 501–512.

    Article  Google Scholar 

  49. Wang, S. P., Li, Y. J., Yao, M., & Wang, R. Z. (1998). Compressive residual stress introduced by shot peening. Journal of Materials Processing Technology, 73, 64–73.

    Article  Google Scholar 

  50. Ding, K., & Ye, L. (2003). FEM simulation of two sided laser shock peening of thin sections of Ti–6Al–4 V alloy. Surface Engineering, 19, 127–133.

    Article  CAS  Google Scholar 

  51. Huang, S., Zhou, J. Z., Jiang, S. Q., Zhu, Y. B., & Hu, L. L. (2010). Dynamical analysis on stresses in metal caused by laser shot peening. Chinese Journal Lasers, 37, 256–260. (in Chinese).

    Article  Google Scholar 

  52. Hu, Y. X., Gong, C. M., Yao, Z. Q., & Hu, J. (2009). Investigation on the non–homogeneity of residual stress field induced by laser shock peening. Surface and Coatings Technology, 203, 3503–3508.

    Article  CAS  Google Scholar 

  53. Peyre, P., Berthe, L., Scherpereel, X., & Fabbro, R. (1998). Laser–shock processing of Al–coated 55C1steel in water–confinement regime, characterization and application to high–cycle fatigue behavior. Journal of Materials Science, 33, 1421–1429.

    Article  CAS  Google Scholar 

  54. Arif, A. F. M. (2003). Numerical prediction of plastic deformation and residual stresses induced by laser shock processing. Journal of Materials Processing Technology, 136, 120–138.

    Article  Google Scholar 

  55. Peyre, P., & Fabbro, R. (1995). Laser shock processing: A review of the physics and applications. Optical and Quantum Electronics, 27, 1213–1229.

    CAS  Google Scholar 

  56. Ocaña, J. L., Morales, M., Molpeceres, C., & Torres, T. (2004). Numerical simulation of surface deformation and residual stresses fields in laser shock processing experiments. Applied Surface Science, 238, 242–248.

    Article  Google Scholar 

  57. Han, B., & Ju, D. Y. (2009). Compressive residual stress induced by water cavitation peening: A finite element analysis. Materials and Design, 30, 3325–3332.

    Article  CAS  Google Scholar 

  58. Kirk, D. (2003). Relationships between Almen strip thickness and arc heights. The Shot Peener, 17, 22–27.

    Google Scholar 

  59. Lu, J. Z. (2010). Investigation of laser shock processing on the mechanical properties and micro-plastic deformation mechanism of LY2 aluminum alloy. Dissertation, Jiangsu University. (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinzhong Lu .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, Y., Lu, J., Luo, K. (2013). Tensile Properties and Fatigue Lives of LY2 Al Alloy Subjected to Laser Shock Processing. In: Laser Shock Processing of FCC Metals. Springer Series in Materials Science, vol 179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35674-2_3

Download citation

Publish with us

Policies and ethics