Skip to main content

General Introduction

  • Chapter
  • First Online:
  • 1778 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 179))

Abstract

This chapter presents the laser shock processing (LSP) process, recent development of LSP on alloys and metallic materials, typical applications of LSP and the scope of this book.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Askar, C. A., & Moroz, E. M. (1963). Pressure on evaporation of matter in a radiation beam. Journal of Experimental and Theoretical Physics Letters, 16, 1638–1644.

    Google Scholar 

  2. White, R. M. (1963). Elastic wave generation by electron bombardment or electromagnetic wave absorption. Journal of Applied Physics, 34, 2123–2124.

    Article  Google Scholar 

  3. Anderholm, N. C. (1970). Laser-generated stress wave. Applied Physics Letters, 16(3), 113–115.

    Article  CAS  Google Scholar 

  4. Clauer, A.H., Holbrook, J.H., Fairand, B.P. (1981). Effects of laser induced shock waves on metals. In: M.A. Meyers, L.E. Murr (Ed.), shock waves and high-strain-rate phenomena in metals (pp. 675–703). New York: Plenum Publishing Corporation.

    Google Scholar 

  5. Banas, G., Elsayed-ali, H. E., Lawrence, F. V., & Rigsbee, J. M. (1990). Laser shock induced mechanical and microstructural modification of welded maraging steel. Applied Physics, 67, 2380–2384.

    Article  CAS  Google Scholar 

  6. Banas, G., Lawrence, F. V., Rigsbee, J. M., & Elsayed-ali, H. E. (1990). Laser shock hardening of welded maraging steel. Surface Engineering, 67, 280–290.

    Google Scholar 

  7. Cottet, F., Marty, L., Hallouin, M., & Romain, J. P. (1988). Two-dimensional study of shock breakout at the rear face of laser-irradiated metallic targets. Journal of Applied Physics, 64(9), 4473–4476.

    Article  Google Scholar 

  8. Fabbro, R., Fournier, J., Ballard, P., Devaux, D., & Virmont, J. (1990). Physical study of laser-produced plasma in confined geometry. Journal of Applied Physics, 68(2), 775–784.

    Article  CAS  Google Scholar 

  9. Devaux, D., Fabbro, R., Tollier, L., & Bartnicki, E. (1993). Generation of shock waves by laser-induced plasma in confined geometry. Journal of Applied Physics, 74(4), 2268–2273.

    Article  CAS  Google Scholar 

  10. Berthe, L., Fabbro, R., Peyre, P., Tollier, L., & Bartnicki, E. (1997). Shock waves from a water-confined laser-generated plasma. Journal of Applied Physics, 82(6), 2826–2832.

    Article  CAS  Google Scholar 

  11. Tollier, L., Fabbro, R., & Bartnicki, E. (1998). Study of the laser-driven spallation process by the velocity interferometer system for any reflector interferometry technique. I. Laser-shock characterization. Journal of Applied Physics, 83(3), 1224–1230.

    Article  CAS  Google Scholar 

  12. Tollier, L., & Fabbro, R. (1998). Study of the laser-driven spallation process by the VISAR interferometry technique II: experiment and simulation of the spallation process. Journal of Applied Physics, 83(3), 1231–1237.

    Article  CAS  Google Scholar 

  13. Peyre, P., Berthe, L., Scherpereel, X., Fabbro, R., & Bartnicki, E. (1998). Experimental study of laser-driven shock waves in stainless steels. Journal of Applied Physics, 84(11), 5985–5992.

    Article  CAS  Google Scholar 

  14. Berthe, L., Fabbro, R., Peyre, P., & Bartnicki, E. (1999). Wavelength dependent of laser shock-wave generation in the water-confinement regime. Journal of Applied Physics, 85(11), 7552–7555.

    Article  CAS  Google Scholar 

  15. Zhang, H., & Yu, C. Y. (1998). Laser shock processing of 2024–T62 aluminum alloy. Materials Science and Engineering A, 257, 322–327.

    Article  Google Scholar 

  16. Zhang, Y. K., Zhang, S. Y., Zhang, X. R., Cai, L., Yang, J. C., & Ren, N. F. (1997). Investigation of the surface qualities of laser shock-processed zones and the effect on fatigue life of aluminum alloy. Surface & Coatings Technology, 92(1–2), 104–109.

    CAS  Google Scholar 

  17. Sano, Y., Mukai, N., Okazaki, K., & Obata, M. (1997). Residual stress improvement in metal surface by underwater laser irradiation. Nuclear Instruments & Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 121, 432–436.

    Article  CAS  Google Scholar 

  18. Ye, C., Liao, Y. C., & Cheng, G. J. (2010). Warm laser shock peening driven nanostructures and their effects on fatigue performance in aluminum alloy 6160. Advanced Engineering Materials, 12(4), 291–297.

    CAS  Google Scholar 

  19. Ye, C., Suslov, S., Lin, D., & Cheng, G. J. (2012). Deformation-induced martensite and nanotwins by cryogenic laser shock peening of AISI 304 stainless steel and the effects on mechanical properties. Philosophical Magazine, 92(11), 1369–1389.

    Article  CAS  Google Scholar 

  20. Ye, C., & Cheng, G. J. (2010). Effects of temperature on laser shock induced plastic deformation: the case of copper. Journal of Manufacturing Science and Engineering, 132, 061009.

    Article  Google Scholar 

  21. Ye, C., Suslov, S., Fei, X. L., & Cheng, G. J. (2011). Bimodal nanocrystallization of NiTi shape memory alloy by laser shock peening and post-deformation annealing. Acta Materialia, 59, 7219–7227.

    Article  CAS  Google Scholar 

  22. Ye, C., Suslov, S., Kim, B. J., Stach, E. A., & Cheng, G. J. (2011). Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening. Acta Materialia, 59, 1014–1025.

    Article  CAS  Google Scholar 

  23. Zhang, Y. K., Zhang, X. R., Wang, X. D., Zhang, S. Y., Gao, C. Y., Zhou, J. Z., et al. (2001). Elastic properties modification in aluminum alloy induced by laser-shock processing. Materials Science and Engineering A, 297(1–2), 138–143.

    Article  Google Scholar 

  24. Lu, J. Z., Zhang, L., Feng, A. X., Jiang, Y. F., & Cheng, G. G. (2009). Effects of laser shock processing on mechanical properties of Fe–Ni alloy. Materials and Design, 30(9), 3673–3678.

    Article  CAS  Google Scholar 

  25. Sánchez-Santana, U., Rubio-González, C., Gomez-Rosas, G., Ocaña, J. L., Molpeceres, C., Porro, J., et al. (2006). Wear and friction of 6061–T6 aluminum alloy treated by laser shock processing. Wear, 260(7–8), 847–854.

    Article  Google Scholar 

  26. Lu, J. Z., Luo, K. Y., Dai, F. Z., Zhong, J. W., Xu, L. Z., Yang, C. J., et al. (2012). Effects of multiple laser shock processing (LSP) impacts on mechanical properties and wear behaviors of AISI 8620 steel. Materials Science and Engineering A, 536, 57–63.

    Article  CAS  Google Scholar 

  27. Lu, J. Z., Zhong, J. W., Luo, K. Y., Zhang, L., Dai, F. Z., Chen, K. M., et al. (2011). Micro-structural strengthening mechanism of multiple laser shock processing impacts on AISI 8620 steel. Materials Science and Engineering A, 528(19–20), 6128–6133.

    Article  CAS  Google Scholar 

  28. Cellard, C., Retraint, D., François, M., Rouhaud, E., & Saunier, D. L. (2012). Laser shock peening of Ti-17 titanium alloy: Influence of process parameters. Materials Science and Engineering A, 532, 362–372.

    Article  CAS  Google Scholar 

  29. Rubio-González, C., Gomez-Rosas, G., Ocaña, J. L., Molpeceres, C., Banderas, A., Porro, J., et al. (2006). Effect of an absorbent overlay on the residual stress field induced by laser shock processing on aluminum samples. Applied Surface Science, 252(18), 6201–6205.

    Article  Google Scholar 

  30. Hu, Y. X., & Yao, Z. Q. (2008). Overlapping rate effect on laser shock processing of 1045 steel by small spots with Nd: YAG pulsed laser. Surface & Coatings Technology, 202(8), 1517–1525.

    Article  CAS  Google Scholar 

  31. Zhang, L., Luo, K. Y., Lu, J. Z., Zhang, Y. K., Dai, F. Z., & Zhong, J. W. (2011). Effects of laser shock processing with different shocked paths on mechanical properties of laser welded ANSI 304 stainless steel joint. Materials Science and Engineering A, 528(13–14), 4652–4657.

    Article  Google Scholar 

  32. Gomez-Rosas, G., Rubio-Gonzalez, C., Ocaña, J. L., Molpeceres, C., Porro, J. A., Chi-Moreno, W., et al. (2005). High level compressive residual stresses produced in aluminum alloys by laser shock processing. Applied Surface Science, 252(4), 883–887.

    Article  CAS  Google Scholar 

  33. Gomez-Rosas, G., Rubio-Gonzalez, C., Ocaña, J. L., Molpeceres, C., Porro, J. A., Morales, M., et al. (2010). Laser shock processing of 6061–T6 Al alloy with 1064 nm and 532 nm wavelengths. Applied Surface Science, 256(20), 5828–5831.

    Article  CAS  Google Scholar 

  34. Dorman, M., Toparli, M. B., Smyth, N., Cini, A., Fitzpatrick, M. E., & Irving, P. E. (2012). Effect of laser shock peening on residual stress and fatigue life of clad 2024 aluminium sheet containing scribe defects. Materials Science and Engineering A, 548, 142–151.

    Article  CAS  Google Scholar 

  35. Gerland, M., & Hallouin, M. (1994). Effect of pressure on the microstructure of an austenitic stainless steel shock-loaded by very short laser pulses. Journal of Materials Science, 29, 345–351.

    Article  CAS  Google Scholar 

  36. Montross, C. S., Florea, V., Brandt, M., & Swain, M. V. (2000). Subsurface properties of laser peened 6061–T6 Al weldments. Surface Engineering, 16, 116–121.

    Article  CAS  Google Scholar 

  37. Montross, C. S., Brandt, M., & Swain, M. V. (2001). Self-limiting hardness changes in laser peened 6061–T6 aluminum. Surface Engineering, 17(6), 477–482.

    Article  CAS  Google Scholar 

  38. Maawad, E., Sano, Y., Wagner, L., Brokmeier, H. G., & Genzel, C. (2012). Investigation of laser shock peening effects on residual stress state and fatigue performance of titanium alloys. Materials Science and Engineering A, 536(28), 82–91.

    Article  CAS  Google Scholar 

  39. Yang, J. M., Her, Y. C., Han, N., & Clauer, A. (2001). Laser shock peening on fatigue behavior of 2024–T3 Al alloy with fastener holes and stopholes. Materials Science and Engineering A, 298(1–2), 296–299.

    Article  Google Scholar 

  40. Chahardehi, A., Brennan, F. P., & Steuwer, A. (2010). The effect of residual stresses arising from laser shock peening on fatigue crack growth. Engineering Fracture Mechanics, 77(11), 2033–2039.

    Article  Google Scholar 

  41. Rubio-González, C., Felix-Martinez, C., Gomez-Rosas, G., Ocaña, J. L., Morales, M., & Porro, J. A. (2011). Effect of laser shock processing on fatigue crack growth of duplex stainless steel. Materials Science and Engineering A, 528(3), 914–919.

    Article  Google Scholar 

  42. Rubio-González, C., Ocaña, J. L., Gomez-Rosas, G., Molpeceres, C., Paredes, M., Banderas, A., et al. (2004). Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061–T6 aluminum alloy. Materials Science and Engineering A, 386(1–2), 291–295.

    Article  Google Scholar 

  43. Amar, H., Vignal, V., Krawiec, H., Josse, C., Peyre, P., Silva, S. N., et al. (2011). Influence of the microstructure and laser shock processing (LSP) on the corrosion behaviour of the AA2050-T8 aluminium alloy. Corrosion Science, 53(10), 3215–3221.

    Article  CAS  Google Scholar 

  44. Trdan, U., & Grum, J. (2012). Evaluation of corrosion resistance of AA6082-T651 aluminium alloy after laser shock peening by means of cyclic polarisation and ElS methods. Corrosion Science, 59, 324–333.

    Article  CAS  Google Scholar 

  45. Krawiec, H., Vignal, V., Amar, H., & Peyre, P. (2011). Local electrochemical impedance spectroscopy study of the influence of ageing in air and laser shock processing on the micro-electrochemical behaviour of AA2050-T8 aluminium alloy. Electrochimica Acta, 56(26), 9581–9587.

    Article  CAS  Google Scholar 

  46. Zhang, Y. K., You, J., Lu, J. Z., Cui, C. Y., Jiang, Y. F., & Ren, X. D. (2010). Effects of laser shock processing on stress corrosion cracking susceptibility of AZ31B magnesium alloy. Surface & Coatings Technology, 204(24), 3947–3953.

    Article  CAS  Google Scholar 

  47. Wu, B. X., & Shin, Y. C. (2006). Laser pulse transmission through the water breakdown plasma in laser shock peening. Applied Physics Letters, 88, 041116.

    Article  Google Scholar 

  48. Wu, B. X. (2008). High-intensity nanosecond-pulsed laser-induced plasma in air, water, and vacuum: a comparative study of the early-stage evolution using a physics based predictive model. Applied Physics Letters, 93, 101104.

    Article  Google Scholar 

  49. Wu, X. Q., Duan, Z. P., Song, H. W., Wei, Y. P., Wang, X., & Huang, C. G. (2011). Shock pressure induced by glass-confined laser shock peening: experiments, modeling and simulation. Journal of Applied Physics, 110, 053112.

    Article  Google Scholar 

  50. Thord, T., Franz-Josef, K., & Aravinda, K. (2003). Temperatures, pressures and stresses during laser shock processing. Optics and Lasers in Engineering, 39(1), 51–71.

    Article  Google Scholar 

  51. Ruschau, J. J., John, R., Thompson, S. R., & Nicholas, T. (1999). Fatigue crack nucleation and growth rate behaviour of laser shock peened titanium. International Journal of Fatigue, 21, S199–S209.

    Article  CAS  Google Scholar 

  52. Mannava, S., McDaniel, A. E., & Cowie, W. D. (1996). Laser shock peened rotor components for turbomachinery. US Patent 5,492,447, 20 Feb 1996, General Electric Company (Cincinnati, OH).

    Google Scholar 

  53. Mannava, S., McDaniel, A. E., Cowie, W. D., Halila, H., Rhoda, J E., & Gutknecht, J E. (1997). US Patent 5,591,009, 7 Jan 1997, General Electric Company (Cincinnati, OH).

    Google Scholar 

  54. Ferrigno, S. J., McAllister, K. G., & Mannava, S. (2001). US Patent 6,200,689, 13 Mar 2001, General Electric Company (Cincinnati, OH).

    Google Scholar 

  55. Casarcia, D. A., Cowie, W. D., & Mannava, S. (1996). US Patent 5,584,586, 17 Dec 1996, General Electric Company Cincinnati (OH).

    Google Scholar 

  56. Brown, A. S. (1998). A shocking way to strengthen metal. In: Aerospace America (p. 21–23).

    Google Scholar 

  57. Sokol, D. W., Clauer, A. H., & Ravindranath, R. (2004). Applications of laser peening to titanium alloys. The ASME/JSME 2004 pressure vessels and piping division Conference, San Diego CA, 25–29 July 2004.

    Google Scholar 

  58. http://www.lspt.com/FatRevChart.pdf.

  59. Rankin, J., Hackel, L., & Harrison, J. (2010). Effect of laser peening on fatigue life in an arrestment hook shank application for naval aircraft. The 2nd international laser peening conference, San Francisco CA, 19–22 April 2010.

    Google Scholar 

  60. Sano, Y. J., Mukai, N., Chida, I., Uehara, T., & Yoda, M. (2010). Applications of laser peening without protective coating to enhance structural integrity of metallic components. The 2nd international laser peening conference, San Francisco CA, 19–22 April 2010.

    Google Scholar 

  61. Sano, Y. J., Obata, M., Kubo, T., Mukai, N., Yoda, M., Masaki, K., et al. (2006). Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating. Materials Science and Engineering A, 417(1–2), 334–340.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinzhong Lu .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, Y., Lu, J., Luo, K. (2013). General Introduction. In: Laser Shock Processing of FCC Metals. Springer Series in Materials Science, vol 179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35674-2_1

Download citation

Publish with us

Policies and ethics