Skip to main content

Spectral Decomposition of the AR Metric

  • Chapter
  • First Online:
Advances in Theoretical and Applied Statistics

Part of the book series: Studies in Theoretical and Applied Statistics ((STASSPSS))

  • 2739 Accesses

Abstract

This work investigates a spectral decomposition of the AR metric proposed as a measure of structural dissimilarity among ARIMA processes. Specifically, the metric will be related to the variance of a stationary process so that its behaviour in the frequency domain will help to detect how unobserved components generated by the parameters of both phenomena concur in specifying the obtained distance. Foundations for the metric are briefly reminded and the main consequences of the proposed decomposition are discussed with special reference to some specific stochastic processes in order to improve the interpretative content of the AR metric.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In order to simplify notation, in this chapter we are not formally considering multiplicative seasonal ARIMA processes; however, all the subsequent results straightforwardly follow. In addition, we are strictly using classical notation as in [5].

  2. 2.

    In fact, to be correct we should define as δ 1 the first non-zero absolute difference between the AR expansions of X t and Y t processes. This consideration is important when comparing pure AR seasonal processes, for instance; however, we are omitting this point for simplicity of notation.

References

  1. Anderson, B., Moore, J.: Optimal Filtering. Prentice-Hall, Englewood Cliffs (1979)

    MATH  Google Scholar 

  2. Barbieri, M.M.: Decomposizione frequenziale dell’indice di determinismo lineare. Atti della XXXIV Riunione Scientifica della SIS, vol. 2, pp. 59–66. Nuova Immagine Editrice, Siena (1988)

    Google Scholar 

  3. Battaglia, F.: Inverse autocovariances and a measure of linear determinism for a stationary process. J. Time Anal. 4, 79–87 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beran, J.: Statistics for Long Memory Processes. Chapman & Hall, New York (1994)

    MATH  Google Scholar 

  5. Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Analysis, revised edition, 1976. Holden-Day, San Francisco (1970)

    Google Scholar 

  6. Brockwell, P.J., Davies, R.A.: Time Series: Theory and Methods, 2nd edn. Springer, New York (1991)

    Book  Google Scholar 

  7. Corduas, M.: Misure di distanza tra serie storiche e modelli parametrici. Quaderni dell’Istituto Economico Finanziario, n.3. Universit di Napoli Federico II, Naples (1992)

    Google Scholar 

  8. Corduas, M.: Uno studio sulla distribuzione asintotica della metrica autoregressiva. Statistica LVI, 321–332 (1996)

    Google Scholar 

  9. Corduas, M.: La metrica autoregressiva tra modelli ARIMA: una procedura in linguaggio GAUSS. Quaderni di Statistica 2, 1–37 (2000)

    Google Scholar 

  10. Corduas, M.: Classifying daily streamflow time series by AR metric. In: 4th International Workshop on Space-Temporal Modelling, EDES, Sassari, 171–176 (2008)

    Google Scholar 

  11. Corduas, M.: Clustering streamflow time series for regional classification. J. Hydrol. 407, 73–80 (2011)

    Article  Google Scholar 

  12. Corduas, M., Piccolo, D.: Time series clustering and classification by the autoregressive metric. Comput. Stat. Data Anal. 52, 1860–1872 (2007)

    Article  MathSciNet  Google Scholar 

  13. Di Iorio, F., Triacca, U.: Testing for non-causality by using Autoregressive metric. Dipartimento di Scienze Statistiche, Working paper (2010)

    Google Scholar 

  14. Gray, A., Markel, J.: Distance measures for speech processing. IEEE Trans. Acoust. Speech Signal Process. ASSP-24, 380–391 (1976)

    Article  Google Scholar 

  15. Liao, T.: Clustering time series data: a survey. Pattern Recogn. 38, 1857–1874 (2005)

    Article  MATH  Google Scholar 

  16. Maharaj, E.A.: A significance test for classifying ARMA models. J. Stat. Comput. Simulat. 54, 305–311 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Maharaj, E.A.: Clusters of time series. J. Classif. 17, 297–314 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Otranto, E.: Classifying the markets volatility with ARMA distance measures. Quaderni di Statistica 6, 1–19 (2004)

    Google Scholar 

  19. Otranto, E.: Clustering heteroskedastic time series by model-based procedures. Comput. Stat. Data Anal. 52, 4685–4698 (2007)

    Article  MathSciNet  Google Scholar 

  20. Otranto, E.: Identifying financial time series with similar dynamic conditional correlation. Comput. Stat. Data Anal. 55, 1–15 (2010)

    Article  MathSciNet  Google Scholar 

  21. Otranto, E., Triacca, U.: Testing for equal predictability of stationary ARMA processes. J. Appl. Stat. 34, 1091–1108 (2007)

    Article  MathSciNet  Google Scholar 

  22. Piccolo, D.: Una topologia per la classe dei processi ARIMA. Statistica XLIV, 47–59 (1984)

    Google Scholar 

  23. Piccolo, D.: On a measure of dissimilarity between ARIMA models. In: Proceedings of the ASA Meetings, Business and Economic Section, pp. 231–236, Washington, DC (1989)

    Google Scholar 

  24. Piccolo, D.: A distance measure for classifying ARIMA models. J. Time Anal. 11, 153–164 (1990)

    Article  MATH  Google Scholar 

  25. Piccolo, D.: Statistical issues on the AR metric in time series analysis. In: Proceedings of the SIS 2007 Conference on “Risk and Prediction”, pp. 221–232, CLEUP, Padova (2007)

    Google Scholar 

  26. Piccolo, D.: The autoregressive metric for comparing time series models. Statistica LXX, 459–480 (2010)

    Google Scholar 

  27. Triacca, U.: Feedback, causality and distance between ARMA models. Math. Comput. Simulat. 64, 679–685 (2004)

    Article  MathSciNet  Google Scholar 

  28. Tunnicliffe Wilson, G.: Some efficient procedure for high order ARMA models. J. Stat. Comput. Simulat. 8, 301–309 (1979)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research has been supported by Department of Statistical Sciences, University of Naples Federico II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Iannario .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iannario, M., Piccolo, D. (2013). Spectral Decomposition of the AR Metric. In: Torelli, N., Pesarin, F., Bar-Hen, A. (eds) Advances in Theoretical and Applied Statistics. Studies in Theoretical and Applied Statistics(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35588-2_11

Download citation

Publish with us

Policies and ethics