Skip to main content

Phyto-transport and Assimilation of Selenium

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 35))

Abstract

The extensive application and disposal of selenium (Se) have resulted in a significant increase of Se concentrations in the environment, which causes pollution of soil, air, and water as well as the community structure changes of natural ecosystems. Due to the risks to the health of humans and the environment chiefly associated with industrial discharges, Se remediation of contaminated sites is of crucial importance in environmental cleaning up. Se removal using physical, chemical, and engineering techniques is complicated and expensive, but phytoremediation is energy efficient, aesthetically pleasing method, in which plants scavenge Se from the contaminated sites, accumulate it in the biomass, or volatilize gaseous forms of Se into the atmosphere. Different plants vary considerably in their physiological and biochemical responses to Se considering tolerance, uptake, accumulation, and volatilization of Se. Due to the similar chemical properties between selenate and sulfate, selenate is chiefly absorbed by roots through the sulfate transporter. Selenite uptake seems to be driven by passive diffusion. Selenate is accumulated in selenate-supplemented plants, whereas selenite can be readily metabolized to organic Se. The enzymatic reduction of selenate in the presence of ATP sulfurylase appears to be a major rate-limiting step for the selenate-volatilization processes. Therefore, overexpression of ATP sulfurylase in transgenic plants is expected to increase the assimilation of selenate into selenomethionine (SeMet) before the volatilization of the generated gaseous Se of dimethylselenide (DMSe) into the atmosphere. Because the volatile DMSe is much less toxic than other species of Se, phyto-volatilization is a suggestive remediation strategy for phytoremoval of Se from the contaminated soils.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ammar EM, Couri D (1981) Acute toxicity of sodium selenite and selenomethionine in mice after ICV or IV administration. Neurotoxicology 2:383–386

    PubMed  CAS  Google Scholar 

  • Arvy MP (1993) Selenate and selenite uptake and translocation in bean plants (Phaseolus vulgaris). J Exp Bot 44:1083–1087

    Article  CAS  Google Scholar 

  • Atkinson R, Aschmann SM, Hasegawa D, Thompson-Eagle ET, Frankenberger WT Jr (1990) Kinetics of the atmospherically important reactions of dimethyl selenide. Environ Sci Technol 24:1326–1332

    Article  CAS  Google Scholar 

  • Banuelos GS, Lin ZQ (2005) Phytoremediation management of selenium-laden drainage sediments in the San Luis Drain: a greenhouse feasibility study. Ecotoxicol Environ Saf 62:309–316

    Article  PubMed  CAS  Google Scholar 

  • Banuelos GS, Ajwa HA, Wu L, Guo X, Akohoue S, Zambrzuski S (1996) Selenium-induced growth reduction in Brassica land races considered for phytoremediation. Ecotoxicol Environ Saf 36:282–287

    Article  Google Scholar 

  • Banuelos GS, Lin ZQ, Arroyo I, Terry N (2005) Selenium volatilization in vegetated agricultural drainage sediment from the San Luis Drain, Central California. Chemosphere 60:1201–1213

    Article  CAS  Google Scholar 

  • Banuelos G, LeDuc DL, Pilon-Smits EAH, Tagmount A, Terry N (2007) Transgenic Indian mustard overexpressing selenoctsteine lyase or selenocysteine methyltransferase exhibit enhanced potential for selenium phytoremediation under field conditions. Environ Sci Technol 41:599–605

    Article  PubMed  CAS  Google Scholar 

  • Barceloux DG (1999) Selenium. J Toxicol Clin Toxicol 37:145–172

    Article  PubMed  CAS  Google Scholar 

  • Bell PF, Parker DR, Page AL (1992) Contrasting selenate sulfate interaction in selenium accumulating and nonaccumulating plant species. Soil Sci Soc Am J 56:1818–1824

    Article  CAS  Google Scholar 

  • Belzile N, Chen YW, Xu RR (2000) Early digenetic behavior of selenium in freshwater sediments. Appl Geochem 15:1439–1454

    Article  CAS  Google Scholar 

  • Blaylock MJ, James BR (1994) Redox transformations and plant uptake of selenium resulting from root–soil interactions. Plant Soil 158:1–12

    Article  CAS  Google Scholar 

  • Bowie GL, Grieb TM (1991) A model framework for assessing the effects of selenium in aquatic ecosystems. Water Air Soil Pollut 57–58:13–22

    Article  Google Scholar 

  • Brown TA, Shrift A (1982) Selenium: toxicity and tolerance in higher plants. Biol Rev 57:59–84

    Article  CAS  Google Scholar 

  • Broyer TC, Johnson CM, Huston RP (1972) Selenium and nutrition of Astragalus. II. Ionic sorption interactions among selenium, phosphate, and the macro- and micronutrient cations. Plant Soil 36:651–669

    Article  CAS  Google Scholar 

  • Bruhl A, Haverkamp T, Gisselmann G, Schwenn JD (1996) cDNA clone from Arabidopsis thaliana encoding plastidic ferredoxin: sulphite reductase. Biochem Biophys Acta 1295:119–124

    Article  PubMed  CAS  Google Scholar 

  • Chasteen TG (1998) Volatile chemical species of selenium. In: Frankenberger WT Jr (ed) Environmental chemistry of selenium. Marcel Dekker, New York

    Google Scholar 

  • Davis AM (1986) Selenium uptake in Astragalus and Lupinus species. Agric J 78:727–729

    CAS  Google Scholar 

  • Dawson JC, Anderson JW (1988) Incorporation of cysteine and selenocysteine into cystathionine and selenocystathionine by crude extracts of spinach. Phytochemistry 27:3453–3460

    Article  CAS  Google Scholar 

  • De Fillips LF (2010) Biochemical and molecular aspects in phytoremediation of selenium. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, Berlin

    Google Scholar 

  • De Souza MP, Pilon-Smits EAH, Lytle CM, Hwang S, Tai J, Honma TSU, Yeh L, Terry N (1998) Rate-limiting steps in selenium assimilation and volatilization by Indian mustard. Plant Physiol 117:1487–1494

    Article  PubMed  Google Scholar 

  • Dhillon KS, Dhillon SK (2003) Distribution and management of seleniferous soils. Adv Agron 79:119–184

    Article  CAS  Google Scholar 

  • Dickerson OB, Smith TH (1994) Selenium, tellurium, and osmium. In: Zenz C, Dickerson OB, Horvath EP Jr (eds) Occupational medicine, 3rd edn. Mosby, St. Louis, MO

    Google Scholar 

  • Doran JW (1982) Microorganisms and the biological cycling of selenium. Adv Microb Ecol 6:1–32

    Article  CAS  Google Scholar 

  • Duckart EC, Waldron LJ, Donner HE (1992) Selenium uptake and volatilization from plants growing in soil. Soil Sci 153:94–99

    Article  CAS  Google Scholar 

  • EI Mehdawi AF, Pilon-Smits EAH (2011) Ecological aspects of plant selenium hyperaccumulation. Plant Biol 14:1–10

    Article  CAS  Google Scholar 

  • EI-Shafey EI (2007) Removal of Se (IV) from aqueous solution using sulphuric acid-treated peanut shell. J Environ Manage 84:620–627

    Article  CAS  Google Scholar 

  • Ellis DR, Salt DE (2003) Plants, selenium and human health. Curr Opin Plant Biol 6:273–279

    Article  PubMed  CAS  Google Scholar 

  • Elrashidi MA, Adriano DC, Workman SM, Lindsay WL (1987) Chemical equilibria of selenium in soils: a theoretical development. Soil Sci 144:141–152

    Article  CAS  Google Scholar 

  • Freeman GL, Banuelos GS (2011) Selection of salt and boron tolerant selenium hyperaccumulator Stanleya pinnata genotypes and characterization of Se phytoremediation from agricultural drainage sediments. Environ Sci Technol 45:9703–9710

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1978) The biology of oxygen radical. Science 39:522–526

    Google Scholar 

  • Halliwell B, Gutteridge MC (1999) Free radical biology and medicine. Oxford University Press, London

    Google Scholar 

  • Hamilton SJ (2003) Review of residue-based selenium toxicity thresholds for freshwater fish. Ecotoxicol Environ Saf 56:201–210

    Article  PubMed  CAS  Google Scholar 

  • Hamilton SJ (2004) Review of selenium toxicity in the aquatic food chain. Sci Total Environ 326:1–31

    Article  PubMed  CAS  Google Scholar 

  • Hansen D, Duda PJ, Zayed AM, Terry N (1998) Selenium removal by constructed wetlands: role of biological volatilization. Environ Sci Technol 32:591–597

    Article  CAS  Google Scholar 

  • Hartikainen H, Xue T, Piironen V (2000) Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil 225:193–200

    Article  CAS  Google Scholar 

  • Hatzfeld Y, Cathala N, Grignon C, Davidian JC (1998) Effect of ATP sulfurylase overexpression in bright yellow 2 tobacco cells. Plant Physiol 116:1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Hawkesford MJ, Davidian JC, Grignon C (1993) Sulphate/proton co-transport in plasma-membrane vesicles isolated from roots of Brassica napus L.: increased transport in membranes isolated from sulphur-starved plants. Planta 190:297–304

    Article  CAS  Google Scholar 

  • Haygarth PM (1994) Global importance and globally cycling of selenium. In: Frankenberger WT Jr, Benson S (eds) Selenium in the environment. Marcel Dekker, New York

    Google Scholar 

  • Hopper JL, Parker DR (1999) Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate. Plant soil 210:199–207

    Article  CAS  Google Scholar 

  • Karlson U, Frankenberger WT Jr, Spencer WF (1994) Physicochemical properties of dimethyl selenide and dimethyl diselenide. J Chem Eng Data 39:608–610

    Article  CAS  Google Scholar 

  • Kashiwa M, Nishimoto S, Takahashi K, Ike M, Fujita M (2000) Factors affecting soluble selenium removal by a selenate reducing bacterium Bacillus sp. SF-1. J Biosci Bioeng 89:528–533

    Article  PubMed  CAS  Google Scholar 

  • Khattak RA, Page AL, Parker DR, Baktar D (1991) Accumulation and interactions of arsenic, selenium, molybdenum and phosphorus in alfalfa. J Environ Qual 20:165–168

    Article  CAS  Google Scholar 

  • Kitahara J, Seko Y, Imura N (1993) Possible involvement of active oxygen species in selenite toxicity in isolated rat hepatocytes. Arch Toxicol 67:497–501

    Article  PubMed  CAS  Google Scholar 

  • Lass B, Ullrich-Eberius CI (1984) Evidence for proton/sulfate co-transport and its kinetics in Lemna gibba G1. Planta 161:53–60

    Article  CAS  Google Scholar 

  • LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, Abdel-Samie M, Chiang CY, Tagmount A, De Souza M, Neuhierl B, Bock A, Caruso J, Terry N (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383

    Article  PubMed  CAS  Google Scholar 

  • Lemly AD (1985) Ecological basis for regulating aquatic emissions from the power industry: the case with selenium. Ecotoxicol Environ Saf 5:465–486

    CAS  Google Scholar 

  • Leustek T, Murillo M, Cervantes M (1994) Cloning of a cDNA encoding ATP sulfurylase from Arabidopsis thaliana by functional expression in Saccharomyces cerevisiae. Plant Physiol 105:897–902

    Article  PubMed  CAS  Google Scholar 

  • Leustek T, Martin MN, Bick JA, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51:141–165

    Article  PubMed  CAS  Google Scholar 

  • Lundquist TJ, Green FB, Tresan RB, Newman RD, Oswald WJ (1994) The algal-bacterial selenium removal system: mechanisms and field study. In: Frankenberger WT Jr, Benson S (eds) Selenium in the environment. Marcel Dekker, New York

    Google Scholar 

  • Lyi SM, Heller LI, Rutzke M, Welch RM, Kochian LV, Li L (2005) Molecular and biochemical characterization of the selenocysteine Se-methyltransferase gene and Se-methylselenocysteine synthesis in broccoli. Plant Physiol 38:09–420

    Google Scholar 

  • Maiers DT, Wichlacz PL, Thompson DL, Bruhn DF (1988) Selenate reduction by bacteria from a selenium rich environment. Appl Environ Microbiol 54:135–142

    Google Scholar 

  • Mass J (1998) Selenium metabolism in grazing ruminants: deficiency, supplementation, and environmental implications. In: Frankenberger WT Jr, Engberg RA (eds) Environmental chemistry of selenium. Marcel Dekker, New York

    Google Scholar 

  • Meija J, Montes-Bayon M, LeDuc DL, Terry N, Caruso JA (2002) Simultaneous monitoring of volatile selenium and sulfur species from Se accumulating plants (wild type and genetically modified) by GC/MS and GC/ICPMS using solid-phase micro extraction for sample induction. Anal Chem 74:5837–5844

    Article  PubMed  CAS  Google Scholar 

  • Milne JB (1998) The uptake and metabolism of inorganic selenium species. In: Frankenberger WT Jr, Engberg RA (eds) Environmental chemistry of selenium. Marcel Dekker, New York

    Google Scholar 

  • Neuhier B, Thanbichler M, Lottspeich F, Bock A (1999) A family of S-methylmethionine-dependent thiol/selenol methyltransferases. J Biol Chem 274:5407–5414

    Article  CAS  Google Scholar 

  • Newland LW (1982) Handbook of environmental chemistry. Springer, New York

    Google Scholar 

  • Ng BH, Anderson JW (1978) Synthesis of selenocysteine by cysteine synthases from selenium accumulator and non-accumulator plants. Phytochemistry 17:2069–2074

    Article  CAS  Google Scholar 

  • Ng BH, Anderson JW (1979) Light-dependent incorporation of selenite and sulphite into selenocysteine and cysteine by isolated pea chloroplasts. Phytochemistry 18:573–580

    Article  CAS  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139

    Article  PubMed  CAS  Google Scholar 

  • Ohlendorf HM, Gala WR (2000) Selenium and Chevron Richmond Refinery’s water enhancement wetland. Hum Ecol Risk Assess 6:903–905

    Google Scholar 

  • Ohlendorf HM, Hothem RL, Saiki MK, Aldrich TW (1986) Embryonic mortality and abnormalities of aquatic birds: apparent impacts of selenium from irrigation drain water. Sci Total Environ 52:49–63

    Article  CAS  Google Scholar 

  • Panda SK, Khan MH (2003) Antioxidant efficiency in rice (Oryza sativa L.) leaves under heavy metal toxicity. J Plant Biol 30:23–29

    Google Scholar 

  • Parker DR, Feist LJ, Varel TW, Thomason DN, Zhang YQ (2003) Selenium phytoremediation potential of Stanleya pinnata. Plant Soil 249:157–165

    Article  CAS  Google Scholar 

  • Pillay KKS, Thomas CC Jr, Kaminski JW (1963) Neutron activation analysis of the selenium content of fossil fuels. Nuclear Appl Technol 7:478–483

    Google Scholar 

  • Pilon-Smits EAH, LeDuc DL (2009) Phytoremediation of selenium using transgenic plants. Curr Opin Plant Biol 20:207–212

    CAS  Google Scholar 

  • Pilon-Smits EAH, Hwang S, Lytle CM, Zhu YG, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N (1999) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119:123–132

    Article  PubMed  CAS  Google Scholar 

  • Pimenta MJ, Kaneta T, Larondelle Y, Dohmae N, Kamiya Y (1998) S-Adenosyl-L-methionine: L-methionine S-methyltransferase from germinating barley. Plant Physiol 118:431–438

    Article  PubMed  CAS  Google Scholar 

  • Porcella DB, Bowie GL, Sanders JG, Cutter GA (1991) Assessing Se cycling and toxicity in aquatic ecosystems. Water Air Soil Pollut 57–58:3–11

    Article  Google Scholar 

  • Quinn CF, Prins CN, Greeman JL, Gross AM, Hantzis LJ, Reynolds RJB, Yang SI, Covey PA, Banuels GS, Pickering IJ, Fakra SC, Marcus MA, Arathi HS, Pilon-Smits EAH (2011) Selenium accumulation in flowers and its effects on pollination. New Phytol 192:727–737

    Article  PubMed  CAS  Google Scholar 

  • Reid ME, Stratton MS, Lillico AJ, Fakih M, Natarajan R, Clark LC, Marshal JR (2004) A report of high-dose selenium supplementation: response and toxicities. J Trace Elem Med Biol 18:69–74

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld I, Beath OA (1964) Selenium, geobotany, biochemistry, toxicity, and nutrition. Academic, New York

    Google Scholar 

  • Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  PubMed  CAS  Google Scholar 

  • Schlekat CE, Dowdle PR, Lee BG, Luoma SN, Oremland RS (2000) Bioavailability of particle-associated Se to the bivalve Potamocorbula amurensis. Environ Sci Technol 34:4504–4510

    Article  CAS  Google Scholar 

  • Schönherr J, Riederer M (1989) Foliar penetration and accumulation of organic chemicals in plant cuticles. Rev Environ Contam Toxicol 108:1–70

    Article  Google Scholar 

  • Schwarz K, Foltz CM (1957) Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J Am Chem Soc 70:3292–3293

    Article  Google Scholar 

  • Seko Y, Imura A (1997) Active oxygen generation as a possible mechanism of selenium toxicity. Biomed Environ Sci 10:333–339

    PubMed  CAS  Google Scholar 

  • Shardendu U, Salhani N, Boulyga SF, Stengel E (2003) Phytoremediation of selenium by two helophyte species in subsurface flow constructed wetland. Chemosphere 50:967–973

    Article  PubMed  CAS  Google Scholar 

  • Shibagaki N, Rose A, McDermott JP, Fujiwara T, Hayashi H, Yoneyama T, Davies JP (2002) Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J 29:475–486

    Article  PubMed  CAS  Google Scholar 

  • Simmons DBD, Wallschläger D (2005) A critical review of the biogeochemistry and ecotoxicology of selenium in lotic and lentic environments. Environ Toxicol Chem 24:1331–1343

    Article  PubMed  CAS  Google Scholar 

  • Smith FW, Hawkesford MJ, Prosser IM, Clarkson DT (1995) Isolation of a cDNA from Saccharomyces cerevisiae that encodes a high-affinity sulfate transporter at the plasma membrane. Mol Gen Genet 247:709–715

    Article  PubMed  CAS  Google Scholar 

  • Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86:373–389

    Article  PubMed  CAS  Google Scholar 

  • Spallholz JE (1994) On the nature of selenium toxicity and carcinostatic activity. Free Radic Biol Med 17:45–64

    Article  PubMed  CAS  Google Scholar 

  • Srivastava M, Ma LQ, Cotruvo JA (2005) Uptake and distribution of selenium in different fern species. Int J Phytoremediation 7:33–42

    Article  PubMed  CAS  Google Scholar 

  • Sun GX, Liu X, Williams PN, Zhu YG (2010) Distribution and translocation of selenium from soils to grain and its speciation in paddy rice (Oryza sativa L.). Environ Sci Technol 44:6706–6711

    Article  PubMed  CAS  Google Scholar 

  • Tagmount A, Berken A, Terry N (2002) An essential role of S-adenosyl-L-methionine: L-methionine S-methyltransferase in selenium volatilization by plants. Methylation of selenomethionine to seleniummethyl-L-selenium-methionine, the precursor of volatile selenium. Plant Physiol 130:847–856

    Article  PubMed  CAS  Google Scholar 

  • Terry N, Carlson C, Raab TK, Zayed AM (1992) Rates of selenium volatilization among crop species. J Environ Qual 21:341–344

    Article  CAS  Google Scholar 

  • Terry N, Zayed AM, De-Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    Article  PubMed  CAS  Google Scholar 

  • Tinggi U (2003) Essentiality and toxicity of selenium and its status in Australia: a review. Toxicol Lett 137:103–110

    Article  PubMed  CAS  Google Scholar 

  • Tokunaga TK, Lipton DS, Benson SM, Yee AW, Oldfather JM, Duckart EC, Johannis PW, Halvorsen KE (1991) Soil selenium fractionation, depth profiles and time trends in a vegetated site at Kesterson reservoir. Water Air Soil Pollut 57–58:31–41

    Article  Google Scholar 

  • Tsang E, Bowler C, Herouart D, Villarroel R, Genetello C, Inze D (1991) Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell 3:783–792

    PubMed  CAS  Google Scholar 

  • Ursini F, Bindoli A (1987) The role of selenium peroxidases in the protection against oxidative damage of membranes. Chem Phys Lipids 44:255–276

    Article  PubMed  CAS  Google Scholar 

  • Van Huysen T, Abdel-Ghany S, Hale KL, LeDuc D, Terry N, Pilon-Smits EAH (2003) Overexpression of cystathionine-γ-synthase enhances selenium volatilization in Brassica juncea. Planta 218:71–78

    Article  PubMed  CAS  Google Scholar 

  • Van Huysen T, Terry N, Pilon-Smits EAH (2004) Exploring the selenium phytoremediation potential of transgenic Indian mustard overexpressing ATP sulfurylase or cystathionine-γ-synthase. Int J Phytoremediation 6:111–118

    Article  PubMed  CAS  Google Scholar 

  • Virupaksha TK, Shrift A (1965) Biochemical differences between selenium accumulator and non-accumulator Astragalus species. Acta Biochim Biophys Sin 107:69–80

    Article  CAS  Google Scholar 

  • Wang Z, Gao Y (2001) Biochemical cycling of selenium in Chinese environments. Appl Geochem 16:1345–1351

    Article  CAS  Google Scholar 

  • Wang Z, Peng B (1991) Influences of dissolved organic matter on speciation and bioavailability of selenium in Kaschin-beck disease area. Environ Sci 12:86–90 (In Chinese)

    CAS  Google Scholar 

  • Wen HJ, Carignan J (2007) Reviews on atmospheric selenium: emissions, speciation and fate. Atmos Environ 41:7151–7165

    Article  CAS  Google Scholar 

  • Wen HJ, Carignan J, Qiu YZ, Liu SR (2006) Selenium speciation in Kerogen from two Chinese selenium deposits: environmental implications. Environ Sci Technol 40:1126–1132

    Article  PubMed  CAS  Google Scholar 

  • Whanger PD (2002) Selenocompounds in plants and animals and their biological significance. J Am College Nutr 21:223–232

    CAS  Google Scholar 

  • White PJ, Bowen HC, Parmaguru P, Fritz M, Spracklen WP, Spiby RE, Meachan MC, Mead A, Harriman M, Trueman LJ, Smith BM, Thomas B, Broadley MR (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot 55:1927–1937

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Bowen HC, Marshall B, Broadley MR (2007) Extraordinarily high leaf selenium to sulphur ratios define Se-accumulator plants. Ann Bot 96:1–8

    CAS  Google Scholar 

  • Wilber CG (1980) Toxicology of selenium: a review. Clin Toxicol 17:171–230

    Article  PubMed  CAS  Google Scholar 

  • Wu L (2004) Review of 15 years of research on ecotoxicology and remediation of land contaminated by agricultural drainage sediment rich in selenium. Ecotoxicol Environ saf 57:257–269

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Guo X, Banuelos GS (2003) Selenium and sulfur accumulation and soil selenium dissipation in planting of four herbaceous plant species in soil contaminated with drainage sediment rich in both selenium and sulfur. Int J Phytoremediation 5:25–40

    Article  PubMed  CAS  Google Scholar 

  • Xia WP, Tang JA (1990) Comparative studies for selenium contents in Chinese rocks. Acta Scientiae Circumstantiae 10:125–132

    CAS  Google Scholar 

  • Yang GQ, Wang SZ, Zhou RH, Sun SZ (1983) Endemic selenium intoxication of humans in China. Am J Clin Nutr 37:872–881

    PubMed  CAS  Google Scholar 

  • Yoshimoto N, Takahashi H, Smith FW, Yamaya T, Saito K (2002) Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots. Plant J 29:465–473

    Article  PubMed  CAS  Google Scholar 

  • Yu XZ, Gu JD (2007) Metabolic responses of weeping willows to selenate and selenite. Environ Sci Pollut Res 14:510–517

    Article  CAS  Google Scholar 

  • Yu XZ, Gu JD (2008) Differences in uptake and translocation of selenate and selenite by the weeping willow and hybrid willow. Environ Sci Pollut Res 15:499–508

    Article  CAS  Google Scholar 

  • Zayed A, Lytle CM, Terry N (1998) Accumulation and volatilization of different chemical species of selenium by plants. Planta 206:284–292

    Article  CAS  Google Scholar 

  • Zhang YQ, Frankenberger WT Jr (2005) Removal of selenium from river water by a microbial community enhanced with Enterobacter taylorae in organic carbon coated sand columns. Sci Total Environ 346:280–285

    Article  PubMed  CAS  Google Scholar 

  • Zhang YQ, Moore JN (1997) Environmental conditions controlling selenium volatilization from a wetland system. Environ Sci Technol 31:511–517

    Article  CAS  Google Scholar 

  • Zhang LH, Yu FY, Shi WM, Li YJ, Miao YF (2010) Physiological characteristics of selenite uptake by maize roots in response to different pH levels. J Plant Nutr Soil Sci 173:417–422

    Article  CAS  Google Scholar 

  • Zhao C, Ren J, Xue C, Lin E (2005) Study on the relationship between soil selenium and plant selenium uptake. Plant Soil 277:197–206

    Article  CAS  Google Scholar 

  • Zhu YG, Pilon-Smits EAH, Zhao FJ, Williams PN, Meharg AA (2009) Selenium in higher plants: understanding mechanisms for bio-fortification and phytoremediation. Trends Plant Sci 14:436–442

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Sheng-Zhuo Huang from Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, in preparation of graph.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Zhang Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yu, XZ., Gu, JD. (2013). Phyto-transport and Assimilation of Selenium. In: Gupta, D. (eds) Plant-Based Remediation Processes. Soil Biology, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35564-6_9

Download citation

Publish with us

Policies and ethics