Skip to main content

A Multi-disciplinary Challenge for Phytoremediation of Metal-Polluted Pyrite Waste

  • Chapter
  • First Online:
Plant-Based Remediation Processes

Part of the book series: Soil Biology ((SOILBIOL,volume 35))

Abstract

Phytomanagement of metal-polluted land is receiving increasing attention as an alternative to physical and chemical methods of decontamination. Great concern focuses on metal-contaminated industrial waste or sediments, the unusual compositions of which may further limit plant establishment and growth. In this study, we focused attention on a particular industrial waste made of pyrite cinders with high levels of As, Cd, Co, Cu, Pb and Zn, which had been covered in the past with 0.15 m of unpolluted gravelly soil, later colonised by sparse spontaneous vegetation. In these conditions, on-site phytoextraction with field crops and Salicaceae woody species was rarely efficient, except for Zn, Cu and Mn. Although the estimated remediation time was extremely long, even for removing the metal-bioavailable fraction, phytomanagement can stabilise waste against wind erosion and metal movements. Poor above-ground productivity was the main factor constraining phytoextraction. Among a few crops, a maximum of 0.33 kg of metals per hectare was accumulated in the harvestable biomass of fodder radish, whereas a great stock of metals was found at root level, especially in coarse roots of Populus and Salix, suggesting the opportunity of exploiting in planta root stabilisation. For suitable cultivation of the site and to favour root growth, we recommend limiting top soil/waste mixing (shallow soil capping) and paying particular attention to species choice, fertilisation and drainage/irrigation.

In order to facilitate the management of pyrite, on the model plant fodder radish we tested whether or not treatments with auxins (IBA, indolebutyric acid), humic acids or chelators (EDDS, ethylene-diamine-disuccinic acid) have a positive impact on growth and metal uptake. They all not only increased metal concentrations in plant tissues, especially Cu with EDDS, but also caused marked biomass and removal reduction. The weak chelant ability of IBA and humic acids and little information in the literature hinder choice of the appropriate dosages and times of application of these compounds.

It is concluded that the phytomanagement of markedly altered substrates such as pyrite cinders requires a new multi-disciplinary approach, involving genetics, biology, physiology and especially agronomy, to maximise plant adaptation and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson CWN, Brooks RR, Chiarucci A, LaCoste CJ, Leblanc M, Robinson BH, Simcock R, Stewart RB (1999) Phytomining for nickel, thallium and gold. J Geochem Explor 67:407–415

    Article  CAS  Google Scholar 

  • Bandiera M, Mosca G, Vamerali T (2009) Humic acids affect root characteristics of fodder radish (Raphanus sativus L. var. oleiformis Pers.) in metal-polluted wastes. Desalination 247:79–92

    Google Scholar 

  • Bandiera M, Mosca G, Vamerali T (2010) Phytotoxicity and metal leaching in EDDS-assisted phytoextraction from pyrite wastes with Ethiopian mustard and fodder radish. Plant Biosyst 144:490–498

    Article  Google Scholar 

  • Brooks RR, Lee J, Reeves RD, Jaffre T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57

    Article  CAS  Google Scholar 

  • Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  PubMed  CAS  Google Scholar 

  • Clemente R, Almela C, Pilar Bernal M (2006) A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste. Environ Pollut 143:397–406

    Article  PubMed  CAS  Google Scholar 

  • Coletto L, Vamerali T, Mosca G (2006) Characterisation of a site polluted by pyrite cinders and heavy metals for setting up profitable phytoremediation strategies. In: Fotyma M, Kaminska B (eds) Proceedings of the IX ESA congress, vol. 11/06 (2), Warsaw, Poland

    Google Scholar 

  • Delfine S, Tognetti R, Desiderio E, Alvino A (2005) Effect of foliar application of N and humic acids on growth and yield of durum wheat. Agron Sustain Dev 25:183–191

    Article  CAS  Google Scholar 

  • Dickinson NM, Pulford ID (2005) Cadmium phytoextraction using short rotation coppice Salix: the evidence trail. Environ Int 31:609–613

    Article  PubMed  CAS  Google Scholar 

  • Evangelou MWH, Dagan H, Schaeffer A (2004) The influence of humic acids on the phytoextraction of cadmium from soil. Chemosphere 57:207–213

    Article  PubMed  CAS  Google Scholar 

  • Fellet G, Marchiol L, Perosa D, Zerbi G (2007) The application of phytoremediation technology in a soil contaminated by pyrite cinders. Ecol Eng 31:207–214

    Article  Google Scholar 

  • Goins GD, Russelle MP (1996) Fine root demography in alfalfa (Medicago sativa L). Plant Soil 185:281–291

    Article  CAS  Google Scholar 

  • Heim A, Luster J, Brunner I, Frey B, Frossard E (1999) Effects of aluminium treatment on Norway spruce roots, aluminium binding forms, element distribution, and release of organic acids. Plant Soil 216:103–116

    Article  CAS  Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Article  PubMed  Google Scholar 

  • Laureysens I, Blust R, De Temmerman L, Lemmens C, Ceulemans R (2004a) Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. Seasonal variation in leaf, wood and bark concentrations. Environ Pollut 131:485–494

    Article  PubMed  CAS  Google Scholar 

  • Laureysens I, Bogaert J, Blust R, Ceulemans R (2004b) Biomass production of 17 poplar clones in a short-rotation coppice culture on a waste disposal site and its relation to soil characteristics. For Ecol Manag 187:295–309

    Article  Google Scholar 

  • Liphadzi MS, Kirkham MB, Paulsen GM (2006) Auxin-enhanced root growth for phytoremediation of sewage-sludge amended soil. Environ Technol 276:695–704

    Article  Google Scholar 

  • Lopez ML, Peralta-Videa JR, Benitez T, Gardea-Torresdey JL (2005) Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promoter. Chemosphere 61: 595–598

    Article  PubMed  CAS  Google Scholar 

  • Marchiol L, Fellet G, Perosa D, Zerbi G (2007) Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes: a field experience. Plant Physiol Biochem 45:379–387

    Article  PubMed  CAS  Google Scholar 

  • Marmiroli M, Antonioli G, Maestri E, Marmiroli N (2005) Evidence of the involvement of plant ligno-cellulosic structure in the sequestration of Pb: an X-ray spectroscopy-based analysis. Environ Pollut 134:217–227

    Article  PubMed  CAS  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  PubMed  CAS  Google Scholar 

  • Mosca G, Vamerali T, Ganis A, Coletto L, Bona S (2004) Miglioramento dell’efficienza agronomica della fitodecontaminazione di metalli pesanti. In: Zerbi G, Marchiol L (eds) Fitoestrazione di metalli pesanti–Contenimento del rischio ambientale e relazioni suolo-microrganismi-pianta. Forum Editrice, Udine (In Italian)

    Google Scholar 

  • Pietrini F, Zacchini M, Iori V, Pietrosanti L, Bianconi D, Massacci A (2010) Screening of poplar clones for cadmium phytoremediation using photosynthesis, biomass and cadmium content analyses. Int J Phytoremediation 12:105–120

    Article  PubMed  CAS  Google Scholar 

  • Pignatti S, Mengarda F (1962) Un nuovo procedimento per l’elaborazione delle tabelle fitosociologiche. Rendiconti della classe di Scienze fisiche, matematiche, naturali, s. 8, 32:215–222 (In Italian)

    Google Scholar 

  • Pulford ID, Dickinson NM (2005) Phytoremediation technologies using trees. In: Prassad MNV, Naidu R (eds) Trace elements in the environment. Taylor and Francis, CRC, New York

    Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal contaminated land by trees – a review. Environ Int 29:529–540

    Article  PubMed  CAS  Google Scholar 

  • Quartacci MF, Irtelli B, Baker AJM, Navari-Izzo F (2007) The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata. Chemosphere 68:1920–1928

    Article  PubMed  CAS  Google Scholar 

  • Rascio N, Dalla Vecchia F, La Rocca N, Barbato R, Pagliano C, Raviolo M, Gonnelli C, Gabbrielli R (2008) Metal accumulation and damage in rice (cv. Vialone nano) seedlings exposed to cadmium. Environ Exp Bot 62:267–278

    Article  CAS  Google Scholar 

  • Raskin I, Nanda-Kumar PBA, Dushenkov S, Salt DE (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290

    Article  CAS  Google Scholar 

  • Robinson B, Schulin R, Nowack B, Roulier S, Menon M, Clothier B, Green S, Mills T (2006) Phytoremediation for the management of metal flux in contaminated sites. For Snow Landsc Res 80:221–234

    Google Scholar 

  • Rosselli W, Keller C, Boschi K (2003) Phytoextraction capacity of trees growing on a metal-contaminated soil. Plant Soil 256:265–272

    Article  CAS  Google Scholar 

  • Saison C, Schwartz C, Morel JL (2004) Hyperaccumulation of metals by Thlaspi caerulescens as affected by root development and Cd-Zn/Ca-Mg interactions. Int J Phytoremediation 6:49–61

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Blaylock M, Nanda-Kumar PBA, Dushenkov V, Ensly BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic elements from the environment using plants. Biotechnology 13:468–475

    Article  PubMed  CAS  Google Scholar 

  • Sheldon AR, Menzies NW (2005) The effect of copper toxicity on the growth and root morphology of Rhodes grass (Chloris gayana Knuth.) in resin buffered solution culture. Plant Soil 278: 341–349

    Article  CAS  Google Scholar 

  • Shen H, Christie P, Li XL (2006) Uptake of zinc, cadmium and phosphorus by arbuscular mycorrhizal maize (Zea mays L.) from a low available phosphorus calcareous soil spiked with zinc and cadmium. Environ Geochem Health 28:111–119

    Article  PubMed  CAS  Google Scholar 

  • Tandy S, Bossart K, Mueller R, Ritschel J, Hauser L, Schulin R, Nowack B (2004) Extraction of heavy metals from soils using biodegradable chelating agents. Environ Sci Technol 38: 937–944

    Article  PubMed  CAS  Google Scholar 

  • Ubi W, Osodeke VE (2007) Toxicity of aluminium to pineapple (Ananas comosus) grown on acid sands of Cross River State, Nigeria. Global J Environ Sci 6:15–20

    CAS  Google Scholar 

  • Vamerali T, Bandiera M, Coletto L, Zanetti F, Dickinson NM, Mosca G (2009) Phytoremediation trials on metal- and arsenic-contaminated pyrite wastes (Torviscosa, Italy). Environ Pollut 157: 887–894

    Article  PubMed  CAS  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17

    Article  CAS  Google Scholar 

  • Vamerali T, Bandiera M, Hartley W, Mosca G (2011a) Assisted phytoremediation of mixed metal(loid)-polluted pyrite waste: effects of foliar and substrate IBA application on fodder radish. Chemosphere 84:213–219

    Article  PubMed  CAS  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2011b) In situ phytoremediation of arsenic- and metal-polluted pyrite waste with field crops: effects of soil management. Chemosphere 83: 1241–1248

    Article  PubMed  CAS  Google Scholar 

  • Vidal M, López-Sánchez JF, Sastre J, Jiménez G, Dagnac T, Rubio R, Rauret G (1999) Prediction of the impact of the Aznalcóllar toxic spill on the trace element contamination of agricultural soils. Sci Tot Environ 242:131–148

    Article  CAS  Google Scholar 

  • Wang FY, Lin XG, Yin R (2007) Effect of Arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil. Int J Phytoremediation 9:345–353

    Article  PubMed  Google Scholar 

  • Wiegleb G, Felinks B (2001) Primary succession in post-mining landscapes of lower Lusatia – chance or necessity. Ecol Eng 17:199–217

    Article  Google Scholar 

  • Yang XE, Feng Y, He Z, Stoffella PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18:339–353

    Article  PubMed  CAS  Google Scholar 

  • Yoon JK, Cao XD, Zhou QX, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teofilo Vamerali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vamerali, T., Bandiera, M., Mosca, G. (2013). A Multi-disciplinary Challenge for Phytoremediation of Metal-Polluted Pyrite Waste. In: Gupta, D. (eds) Plant-Based Remediation Processes. Soil Biology, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35564-6_8

Download citation

Publish with us

Policies and ethics