Skip to main content

Impact of Metal/Metalloid-Contaminated Areas on Plant Growth

  • Chapter
  • First Online:
Plant-Based Remediation Processes

Part of the book series: Soil Biology ((SOILBIOL,volume 35))

Abstract

The efficiency of plants growing in areas polluted by heavy metals/metalloids depends on many factors having different influences. The aim of this work was to determine the influence of selected factors (soil, microbes, and the kind of plant) on plant growth in polluted areas and to compare selected plants for accumulation of heavy metals. The role of soil conditions in natural plant growth and changes of the most important soil parameters as factors of stimulation or inhibition of plant growth are described. Attention is drawn to the significant role of both nutrients (essential for appropriate plant growth) and trace elements present in soil as well as quantitative and qualitative composition of the soil solid phase with respect to plant growth and accumulation efficiency of selected elements. Additionally, we compare three groups of plants (hyperaccumulators, non-hyperaccumulators, and transgenic plants) characterised generally by accumulation efficiency of different metals/metalloids and growth in the same soil conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antosiewicz DM, Escude-Duran C, Wierzbowska E, Skłodowska A (2008) Indigenous plant species with the potential for the phytoremediation of arsenic and metals contaminated soil. Water Air Soil Pollut 193:197–210

    Article  CAS  Google Scholar 

  • Barzanti R, Colzi I, Arnetoli M, Gallo A, Pignattelli S, Gabbrielli R, Gonnelli C (2011) Cadmium phytoextraction potential of different Alyssum species. J Hazard Mater 196:66–72

    Article  PubMed  CAS  Google Scholar 

  • Bednarek R, Dziadowiec H, Pokojska U, Prusinkiewicz Z (2004) Ecological-soil investigations. PWN, Warszawa (In Polish)

    Google Scholar 

  • Bennet LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EA (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual 32:432–440

    Google Scholar 

  • Berken A, Mulholland MM, LeDuc DL, Terry N (2002) Genetic engineering of plants to enhance selenium phytoremediation. Crit Rev Plant Sci 21:567–582

    Article  CAS  Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120

    Article  PubMed  CAS  Google Scholar 

  • Bielińska EJ (2001) Enzymatic activity of soil in sour-cherry orchard depending on the cultivation method. Agricultural University, Lublin

    Google Scholar 

  • Bielińska EJ, Mocek-Płóciniak A (2009) Phosphatases in soil environment. Poznań University of Life Sciences, Poznań

    Google Scholar 

  • Bloom PR, McBride MB, Weaver RM (1979) Aluminium organic matter in acid soils: buffering and solution aluminium activity. Soil Sci Soc Am J 43:488–493

    Article  CAS  Google Scholar 

  • Blum R, Meyer KC, Wunschmann J, Lendzian KJ, Grill E (2010) Cytosolic action of phytochelatin synthase. Plant Physiol 153:159–169

    Article  PubMed  CAS  Google Scholar 

  • Bone J, Head M, Barraclough D, Archer M, Scheib C, Flight D, Voulvoulis N (2010) Soil quality assessment under emerging regulatory requirements. Environ Int 36:609–622

    Article  PubMed  CAS  Google Scholar 

  • Brady NC (1990) The nature and properties of soils. McMillan, New York

    Google Scholar 

  • Brooks RR, Lee J, Reeves RD, Jaffre T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57

    Article  CAS  Google Scholar 

  • Buckman HC, Brady NC (1969) The nature and properties of soils. McMillan, London

    Google Scholar 

  • Chehregani A, Noori M, Yazdi HL (2009) Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Ecotoxicol Environ Saf 72:1349–1353

    Article  PubMed  CAS  Google Scholar 

  • Czuba R (1996) Application principles of mineral fertilisers on arable land. In: Czuba R (ed) Mineral fertilisation of crop plants. Chemical Works “Police”, S.A. Police

    Google Scholar 

  • Demura T, Ye ZH (2010) Regulation of plant biomass production. Curr Opin Plant Biol 13:299–304

    Article  PubMed  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    Article  PubMed  CAS  Google Scholar 

  • El Kheir SB, Oubbih J, Saidi N, Bouabdli A (2008) Uptake and fixation of Zn, Pb, and Cd by Thlaspi caerulescens: application in the cases of old mines of Mibladen and Zaida (West of Morocco). Arab J Geosci 1:87–95

    Article  CAS  Google Scholar 

  • FAO (2007) World reference base for soil resources 2006 (Update 2007). FAO ISSS, ISRIC, Rome

    Google Scholar 

  • Filipek T (2002) Soils as a source of nutrients for plants. In: Bases and consequences of Aro-ecosystem Chemisation. Agricultural University, Lublin

    Google Scholar 

  • Fitzgerald EJ, Caffrey JM, Nesaratnam ST, McLoughlin P (2003) Copper and lead concentrations in salt marsh plants on the Suir Estuary, Ireland. Environ Pollut 123:67–74

    Article  PubMed  CAS  Google Scholar 

  • Flaig W (1975) An introductory review on humic substances: aspects of research on their genesis, their physical and chemical properties, and their effect on organisms, discussion. In: Povoledo D, Golterman HL (eds) Humic substances: their structure and function in the biosphere. Centre for Agricultural and Documentation, Wageningen

    Google Scholar 

  • Gasic K, Korban SS (2007) Expression of Arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn. Planta 225:1277–1285

    Article  PubMed  CAS  Google Scholar 

  • Gramlich A, Moradi AB, Robinson BH, Kaestner A, Schulin R (2011) Dimethylglyoxime (DMG) staining for semi-quantitative mapping of Ni in plant tissue. Environ Exp Bot 71:232–240

    Article  CAS  Google Scholar 

  • Grzebisz W (1996) Effectiveness and optimisation of fertilisation. In: Czuba R (ed) Mineral fertilisation of crop plants. Chemical Works “Police”, S.A. Police

    Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Overexpressing GSH1 AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    Article  PubMed  CAS  Google Scholar 

  • Guo J, Xu W, Ma M (2012) The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana. J Hazard Mater 199–200:309–313

    Article  PubMed  Google Scholar 

  • Haque N, Peralta-Videa JR, Jones GL, Gill TE, Gardea-Torresdey JL (2008) Screening the phytoremediation potential of desert broom (Baccharis sarothroides Gray) growing on mine tailings in Arizona, USA. Environ Pollut 153:362–368

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Allica J, Becerril JM, Garbisu C (2008) Assessment of the phytoextraction potential of high biomass crop plants. Environ Pollut 152:32–40

    Article  PubMed  Google Scholar 

  • Jaffre T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: a nickel accumulating plant from New Caledonia. Science 193:579–580

    Article  PubMed  CAS  Google Scholar 

  • Januszek K (1999) Enzymatic activity of selected forest soils of southern Poland in the light of field and laboratory studies. Zesz Nauk AR Kraków 250:132 (In Polish)

    Google Scholar 

  • Kabata-Pendias A, Pendias H (1999) Biogeochemia pierwiastków śladowych. Biogeochemistry of trace elements. Wyd Naukowe PWN, Warszawa (In Polish)

    Google Scholar 

  • Kawashima CG, Noji M, Nakamura M, Gra Y, Suzuki KT, Saito K (2004) Heavy metal tolerance of transgenic plants over-expressing cysteine synthase. Biotechnol Lett 26:153–157

    Article  PubMed  CAS  Google Scholar 

  • Keller C, Hammer D, Kayser A, Richner W, Brodbeck M, Sennhauser M (2003) Root development and heavy metal phytoextraction efficiency: comparison of different plant species in the field. Plant Soil 249:67–81

    Article  CAS  Google Scholar 

  • Kidd P, Monterroso C (2005) Metal extraction by Alyssum serpyllifolium spp. lusitanicum on mine-spoil soils from Spain. Sci Total Environ 336:1–11

    Article  PubMed  CAS  Google Scholar 

  • Klimkowicz-Pawlas A (2009) Impact of polycyclic aromatic hydrocarbons on site soil function. Institute of Soil Science and Plant Cultivation–State Research Institute, Puławy

    Google Scholar 

  • La Rocca N, Andreoli C, Giacometti GM, Rascio N, Moro I (2009) Responses of the Antarctic microalga Koliella antarctica (Trebouxiophyceae, Chlorophyta) to cadmium contamination. Photosynthetica 47:471–479

    Article  CAS  Google Scholar 

  • Lee J, Bae H, Jeong J, Lee JY, Yang YY, Hwang I, Martinoia E, Lee Y (2003a) Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals. Plant Physiol 133:589–596

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Moon JS, Ko TS, Petros D, Goldsbrough PB, Korban SS (2003b) Over-expression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663

    Article  PubMed  CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    Article  PubMed  CAS  Google Scholar 

  • Madejón P, Murillo JM, Marañón T, Cabrera F, Soriano MA (2003) Trace element and nutrient accumulation in sunflower plants two years after the Aznacóllar mine spill. Sci Total Environ 307:239–257

    Article  PubMed  Google Scholar 

  • Madejón P, Murillo JM, Marañón T, Lepp NW (2007) Factors affecting accumulation of thallium and other trace elements in two wild Brassicaceae spontaneously growing on soils contaminated by tailings dam waste. Chemosphere 67:20–28

    Article  PubMed  Google Scholar 

  • Marques APGC, Moreira H, Rangel AOSS, Castro PML (2009) Arsenic, lead and nickel accumulation in Rubus ulmifolius growing in contaminated soil in Portugal. J Hazard Mater 165:174–179

    Article  PubMed  CAS  Google Scholar 

  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282

    Article  PubMed  CAS  Google Scholar 

  • McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ (2006) Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environ Pollut 141:115–125

    Article  PubMed  CAS  Google Scholar 

  • Memon AR, Schröder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162–175

    Article  CAS  Google Scholar 

  • Mench M, Lepp N, Bert V, Schwitzguébel JP, Gawronski SW, Schröder P, Vangronsveld J (2010) Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859. J Soils Sediments 10:1039–1070

    Article  CAS  Google Scholar 

  • Mengel K, Kirkby EA (2001) Principles of plant nutrition. Kluwer, Dordrecht

    Book  Google Scholar 

  • Mocek A, Drzymała S (2010) Soil origin, analysis and classification. Poznań University of Life Sciences, Poznań

    Google Scholar 

  • Mocek A, Mocek-Płóciniak A (2011) Xenobiotics in Polish soil environment. Nauka-Przyroda-Technologie 4:84 (In Polish)

    Google Scholar 

  • Mocek A, Owczarzak W (2011) Parent material and soil physical properties. In: Gliński J, Horabik J, Lipiec J (eds) Encyclopedia of agrophysics. Springer, Dordrecht

    Google Scholar 

  • Moradi AB, Swoboda S, Robinson B, Prohaska T, Kaestner A, Oswald SE, Wenzel WW, Schulin R (2010a) Mapping of nickel in root cross-sections of the hyperaccumulator plant Berkheya coddii using laser ablation ICP-MS. Environ Exp Bot 69:24–31

    Article  CAS  Google Scholar 

  • Moradi AB, Oswald SE, Nordmeyer-Massner JA, Pruessmann KP, Robinson BH, Schulin R (2010b) Analysis of nickel concentration profiles around the roots of the hyperaccumulator plant Berkheya coddii using MRI and numerical simulations. Plant Soil 328:291–302

    Article  CAS  Google Scholar 

  • Myśków W (1984) Agricultural importance of humus and methods of regulation of its quantities in soil. Institute of Soil Science and Plant Cultivation–State Research Institute, Puławy (In Polish)

    Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation of metals in plants. Water Air Soil Pollut 184:105–126

    Article  CAS  Google Scholar 

  • Pagliano C, Raviolo M, Vecchia FD, Gabbrielli R, Gonnelli C, Rascio N, Barbato R, La Rocca N (2006) Evidence for PSII-donor-side damage and photo inhibition induced by cadmium treatment on rice (Oryza sativa L.). J Photochem Photobiol B Biol 84:70–78

    Article  CAS  Google Scholar 

  • Parizanganeh A, Hajisoltani P, Zamani A (2010) Concentration, distribution and comparison of total and bioavailable metals in top soils and plants accumulation in Zanjan Zinc Industrial Town-Iran. Proc Environ Sci 2:167–174

    Article  Google Scholar 

  • Pen-Mouratov S, Barness G, Steinberger Y (2008) Effect of desert plant eco-physiological adaptation on soil nematode communities. Eur J Soil Biol 44:298–308

    Article  Google Scholar 

  • Pilon-Smits EEAH, Hwang S, Lytle CM, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N (1999) Over-expression of ATP sulfurylase in Brassica juncea leads to increased selenate uptake, reduction and tolerance. Plant Physiol 119:123–132

    Article  PubMed  CAS  Google Scholar 

  • Prasad MNV, Freitas H, Fraenzle S, Wuenschmann S, Markert B (2010) Knowledge explosion in phytotechnologies for environmental solutions. Environ Pollut 158:18–23

    Article  PubMed  CAS  Google Scholar 

  • Prusinkiewicz Z (1999) Environment and soils in definition. In: Toruń PTG (ed) Soil systematic of Polish soils. Roczn Glebozn LXII, vol 3. Turpress, Ostrava (in Polish)

    Google Scholar 

  • PTG (2011) Polish soil classification. Soil Sci Annu LXII:3, in Polish

    Google Scholar 

  • Puchalski T, Prusinkiewicz Z (1990) Ecological basis of forest site science. PWRiL, Warszawa

    Google Scholar 

  • Rascioa N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  Google Scholar 

  • Robinson BH, Leblanc M, Petit D, Brooks RR, Kirkman JH, Gregg PEH (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203:47–56

    Article  CAS  Google Scholar 

  • Robinson BH, Brooks RR, Gregg PEH, Kirkman JH (1999) The nickel phytoextraction potential of some ultramafic soils as determined by sequential extraction. Geoderma 87:293–304

    Article  CAS  Google Scholar 

  • Robinson B, Kim N, Marchetti M, Moni C, Schroeter L, van den Dijssel C, Milne G, Clothier B (2006) Arsenic hyperaccumulation by aquatic macrophytes in the Taupo volcanic zone, New Zealand. Environ Exp Bot 58:206–215

    Article  CAS  Google Scholar 

  • Rząsa S, Owczarzak W (2004) Structure of mineral soils. Poznań University of Life Sciences, Poznań

    Google Scholar 

  • Shukla OP, Juwarkar AA, Singh SK, Khan S, Rai UN (2011) Growth responses and metal accumulation capabilities of woody plants during the phytoremediation of tannery sludge. Waste Manag 31:115–123

    Article  PubMed  CAS  Google Scholar 

  • Silva Gonzaga MI, Santos JAG, Ma LQ (2006) Arsenic chemistry in the rhizosphere of Pteris vittata L. and Nephrolepis exaltata L. Environ Pollut 143:254–260

    Article  PubMed  CAS  Google Scholar 

  • Smreczak B, Maliszewska-Kordybach B (2003) Seeds germination and root growth of selected plants in PAH contaminated soil. Fresenius Environ Bull 12:946–949

    CAS  Google Scholar 

  • Smyk B (1999) Soil organisms and transformations caused by them. In: Zawadzki S (ed) Soli science. PWRiL (In Polish), Warszawa

    Google Scholar 

  • Song WY, Martinoia E, Lee J, Kim D, Kim DY, Vogt E, Shim D, Choi KS, Hwang I, Lee Y (2004) A novel family of cys-rich membrane proteins mediates cadmium resistance in Arabidopsis. Plant Physiol 135:1027–1039

    Article  PubMed  CAS  Google Scholar 

  • Stevenson FJ (1985) Geochemistry of soil humus substances. In: Aiken GR, McKnight DM, Wrshaw RL, Mac Carthy P (eds) Humic substances in soil, sediment and water. Wiley, New York

    Google Scholar 

  • Sun R, Zhou Q, Jin C (2006) Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. Plant Soil 285:125–134

    Article  CAS  Google Scholar 

  • Tamura H, Honda M, Sato T, Kamachi H (2005) Pb hyperaccumulation and tolerance in common buckwheat (Fagopyrum esculentum Moench). J Plant Res 118:355–359

    Article  PubMed  Google Scholar 

  • Tołpa S (1982) Biogens isolated from peat in service for agriculture. In: Gliński J, Boratyński K, Tołpa S (eds) Agro physics, fertilisation and humus-derived biogens. Ossolineum, Wrocław

    Google Scholar 

  • Ulrich B (1983) Soil acidity and its relations to arial deposition. In: Ulrich B, Pankrath J (eds) Effects of accumulation of air pollutants. Forest ecosystems. Reidel, Dordrecht

    Chapter  Google Scholar 

  • Van Nevel LV, Mertens J, Oorts K, Verheyn K (2007) Phytoextraction of metals from soils: how far from practice? Environ Pollut 150:34–40

    Article  PubMed  Google Scholar 

  • Venkatachalam P, Jain A, Sahi S, Raghothama K (2009) Molecular cloning and characterization of phosphate (Pi) responsive genes in Gulf ryegrass (Lolium multiflorum L.): a Pi hyperaccumulator. Plant Mol Biol 69:1–21

    Article  PubMed  CAS  Google Scholar 

  • Wei S, da Silva JAT, Zhou Q (2008) Agro-improving method of phytoextracting heavy metal contaminated soil. J Hazard Mater 150:662–668

    Article  PubMed  CAS  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    Article  CAS  Google Scholar 

  • Xue SG, Chen YX, Reevesb RD, Bakerc AJM, Lin Q, Fernando DR (2004) Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb (Phytolaccaceae). Environ Pollut 131:393–399

    Article  PubMed  CAS  Google Scholar 

  • Yan X, Zhang M, Liao X, Tu S (2012) Influence of amendments on soil arsenic fractionation and phytoavailability by Pteris vittata L. Chemosphere 88:240–244

    Article  PubMed  CAS  Google Scholar 

  • Yanai J, Zhao FJ, McGrath SP, Kosaki T (2006) Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens. Environ Pollut 139:167–175

    Article  PubMed  CAS  Google Scholar 

  • Zabłudowska E, Kowalska J, Jedynak Ł, Wojas S, Skłodowska A, Antosiewicz DM (2009) Search for a plant for phytoremediation–what can we learn from field and hydroponic studies? Chemosphere 77:301–307

    Article  PubMed  Google Scholar 

  • Zaujec A (2007) Functions of organic matter in the circulation of carbon compounds and soil fertility. In: Gonet SS, Markiewicz M (eds) Role of organic matter in environment. PTSH, Wrocław

    Google Scholar 

  • Zhao FJ, McGrath SP (2009) Biofortification and phytoremediation. Curr Opin Plant Biol 12:373–380

    Article  PubMed  CAS  Google Scholar 

  • Zhao FJ, Lombi E, McGrath SP (2003) Assessing the potential for Zn and cadmium phytoremediation with hyperaccumulator Thlaspi caerulescens. Plant Soil 249:37–43

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirosław Mleczek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mleczek, M., Mocek, A., Magdziak, Z., Gąsecka, M., Mocek-Płóciniak, A. (2013). Impact of Metal/Metalloid-Contaminated Areas on Plant Growth. In: Gupta, D. (eds) Plant-Based Remediation Processes. Soil Biology, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35564-6_5

Download citation

Publish with us

Policies and ethics