Skip to main content

Metal/Metalloid Phytoremediation: Ideas and Future

  • Chapter
  • First Online:
Plant-Based Remediation Processes

Part of the book series: Soil Biology ((SOILBIOL,volume 35))

Abstract

This chapter addresses some of the most significant issues in phytoremediation. We described the most important developments in this environment, cleaning method and presented some significant ways for future development. Additionally, this work presents the impact of endo- and exogenous salicylic acid on plant tolerance to presence of metal ions and the biochemical response to metals. Finally, we discuss one of the most significant aspects described in many studies: the genetic background of plant hyperaccumulation and adaptation to toxic concentrations of metals/metalloids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adegbidi HG, Volk TA, White EH, Abrahamson LP, Briggs RD, Bickelhaupt DH (2001) Biomass and nutrient removal by willow clones in experimental bioenergy plantations in New York State. Biomass Bioenerg 20:399–411

    Article  Google Scholar 

  • Ali W, Isayenkov SV, Zhao FJ, Maathuis FJ (2009) Arsenite transport in plants. Cell Mol Life Sci 66:2329–2339

    Article  PubMed  CAS  Google Scholar 

  • Aravind P, Prasad MNV (2005) Cadmium–Zinc interactions in a hydroponic system using Ceratophyllum demersum L.: adaptive ecophysiology, biochemistry and molecular toxicology. Braz J Plant Physiol 17:3–20

    Article  CAS  Google Scholar 

  • Arisi ACM, Mocquot B, Lagriffoul A, Mench M, Foyer CH, Jouanin L (2000) Responses to cadmium in leaves of transformed poplars overexpressing γ-glutamylcysteine synthetase. Physiol Plant 109:143–149

    Article  CAS  Google Scholar 

  • Barałkiewicz D, Kózka M, Piechalak A, Tomaszewska B, Sobczak P (2009) Application of HPLC-ICP-MS and HPLC-MS to determination of Cd and Pb species and phytochelatins in pea (Pisum sativum). Talanta 79:493–498

    Article  PubMed  CAS  Google Scholar 

  • Becher M, Talke IN, Krall L, Krämer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268

    Article  PubMed  CAS  Google Scholar 

  • Belkadhi A, Hédiji H, Abbes Z, Djebali W, Chaïbi W (2012) Influence of salicylic acid pre-treatment on cadmium tolerance and its relationship with non-protein thiol production in flax root. Afr J Biotechnol 11:9788–9796

    CAS  Google Scholar 

  • Bernal M, Testillano PS, Alfonso M, del Carmen Risueno M, Picorel R, Yruela I (2007) Identification and subcellular localization of the soybean copper P1B-ATPase GmHMA8 transporter. J Struct Biol 158:46–58

    Article  PubMed  CAS  Google Scholar 

  • Bernal M, Casero D, Singh V, Wilson GT, Grande A, Yang H, Dodani SC, Pellegrini M, Huijser P, Connolly EL, Merchant SS, Krämer U (2012) Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis. Plant Cell 24:738–761

    Article  PubMed  CAS  Google Scholar 

  • Cailliatte R, Lapeyre B, Briat J-F, Mari S, Curie C (2009) The NRAMP6 metal transporter contributes to cadmium toxicity. Biochem J 422:217–228

    Article  PubMed  CAS  Google Scholar 

  • Callahan DL, Baker AJM, Kolev SD, Wedd AG (2006) Metal ion ligands in hyperaccumulating plants. J Biol Inorg Chem 11:2–12

    Article  PubMed  CAS  Google Scholar 

  • Catarecha P, Segura MD, Franco-Zorrilla JM, Garcia-Ponce B, Lanza M, Solano R, Paz-Ares J, Leyva A (2007) A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell 19:1123–1133

    Article  PubMed  CAS  Google Scholar 

  • Catty P, Boutigny S, Miras R, Joyard J, Rolland N, Seigneurin-Berny D (2011) Biochemical characterization of AtHMA6/PAA1, a chloroplast envelope Cu(I)-ATPase. J Biol Chem 286:36188–36197. doi:10.1074/jbc.M111.241034

    Article  PubMed  CAS  Google Scholar 

  • Cho UH, Park JO (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156:1–9

    Article  PubMed  CAS  Google Scholar 

  • Choudhury S, Panda SK (2004) Role of salicylic acid in regulating cadmium induced oxidative stress in Oryza Sativa L. roots. Bulg J Plant Physiol 30:95–110

    CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212: 475–486

    Article  PubMed  CAS  Google Scholar 

  • Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  PubMed  CAS  Google Scholar 

  • Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330

    Article  PubMed  CAS  Google Scholar 

  • Dat JF, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  PubMed  CAS  Google Scholar 

  • Deinlein U, Weber M, Schmidt H, Rensch S, Trampczynska A, Hansen TH, Husted S, Schjoerring JK, Talke IN, Krämer U, Clemens S (2012) Elevated nicotianamine levels in Arabidopsis halleri roots play a key role in Zn hyperaccumulation. Plant Cell 24:708–723

    Article  PubMed  CAS  Google Scholar 

  • Delhaize E (2003) Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance. Plant Cell Online 15:1131–1142

    Article  CAS  Google Scholar 

  • Delhaize E, Gruber BD, Pittman JK, White RG, Leung H, Miao Y, Jiang L, Ryan PR, Richardson AE (2007) A role for the AtMTP11 gene of Arabidopsis in manganese transport and tolerance. Plant J 51:198–210

    Article  PubMed  CAS  Google Scholar 

  • Desbrosses-Fonrouge A, Voight K, Schroder A, Arrivault S, Thomine S, Kraemer U (2005) Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. FEBS Lett 579:4165–4174

    Article  PubMed  CAS  Google Scholar 

  • Dimitriou I, Rosenqvist H (2011) Sewage sludge and wastewater fertilisation of Short Rotation Coppice (SRC) for increased bioenergy production–biological and economic potential. Biomass Bioenerg 35:835–842

    Article  Google Scholar 

  • Directive 2009/28/EC of the European Parliament and of the Council of 23 April (2009) on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC

    Google Scholar 

  • Drzewiecka K, Mleczek M, Gąsecka M, Magdziak Z, Goliński P (2012) Changes in Salix viminalis L. cv. ‘Cannabina’ morphology and physiology in response to nickel ions – hydroponic investigations. J Hazard Mater 217:429–438

    Article  PubMed  CAS  Google Scholar 

  • Farina R, Beneduzi A, Ambrosini A, de Campos SB, Lisboa BB, Wendisch V, Vargas LK, Passaglia LMP (2012) Diversity of plant growth-promoting rhizobacteria communities associated with the stages of canola growth. Appl Soil Ecol 55:44–52

    Article  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    Article  PubMed  CAS  Google Scholar 

  • Freeman JL, Garcia D, Kim D, Hopf A, Salt DE (2005) Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi hyperaccumulators. Plant Physiol 137:1082–1091

    Article  PubMed  CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–418

    Article  PubMed  CAS  Google Scholar 

  • Gąsecka M, Mleczek M, Drzewiecka K, Magdziak Z, Rissmann I, Chadzinikolau T, Goliński P (2012) Physiological and morphological changes in Salix viminalis L. as a result of plant exposure to copper. J Environ Sci Health A 47:548–557

    Google Scholar 

  • Gendre D, Czernic P, Conéjéro G, Pianelli K, Briat J-F, Lebrun M, Mari S (2006) TcYSL3, a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. Plant J 49:1–15

    Article  PubMed  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez E, Solano R, Rubio V, Leyva A, Paz-Ares J (2005) PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell 17: 3500–3512

    Article  PubMed  CAS  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230:674–676

    Article  PubMed  CAS  Google Scholar 

  • Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ -glutamylcysteine dipeptidyl trans-peptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86:6838–6842

    Article  PubMed  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395

    Article  PubMed  CAS  Google Scholar 

  • Haydon MJ, Cobbett CS (2007) Transporters of ligands for essential metal ions in plants. New Phytol 174:499–506

    Article  PubMed  CAS  Google Scholar 

  • Haydon MJ, Kawachi M, Wirtz M, Stefan H, Hell R, Krämer U (2012) Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell 24:724–737

    Article  PubMed  CAS  Google Scholar 

  • Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette ML, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardt N (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765

    Article  PubMed  CAS  Google Scholar 

  • Hossain MA, Piyatidaet P, da Silva JAT, Fijita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot. doi:10.1155/2012/872875

  • Indriolo E, Na G, Ellis D, Salt DE, Banks JA (2010) A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants. Plant Cell 22:2045–2057

    Article  PubMed  CAS  Google Scholar 

  • Ingle RA, Mugford ST, Rees JD, Campbell MM, Smith JAC (2005) Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants. Plant Cell 17:2089–2106

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru Y, Bashir K, Inoue H, Tsukamoto T, Takahashi M, Nakanishi H, Aoki N, Hirose T, Ohsugi R, Nishizawa NK (2010) Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J 62:379–390. doi:10.1111/j.1365-313X.2010.04158.x

    Article  PubMed  CAS  Google Scholar 

  • Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75:339–364

    Article  Google Scholar 

  • Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33:797–802

    Article  Google Scholar 

  • Kamiya T, Tanaka M, Mitani N, Ma JF, Maeshima M, Fujiwara T (2009) NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana. J Biol Chem 23: 2114–2120

    Google Scholar 

  • Kawachi M, Kobae Y, Mori H, Tomioka R, Lee Y, Maeshima M (2009) A mutant strain Arabidopsis thaliana that lacks vacuolar membrane zinc transporter MTP1 revealed the latent tolerance to excessive zinc. Plant Cell Physiol 50:1156–1170

    Article  PubMed  CAS  Google Scholar 

  • Kim YY, Choi H, Segami S, Cho HT, Martinoia E, Maehima M, Lee Y (2009) AtHMA1 contributes to the detoxification of excess Zn(II) in Arabidopsis. Plant J 58:737–753. doi:10.1111/j.1365-313X.2009.03818.x

    Article  PubMed  CAS  Google Scholar 

  • Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27:799–810

    Article  PubMed  CAS  Google Scholar 

  • Kováčik J, Grúz J, Hedbavny J, Klejdus B, Strnad M (2009) Cadmium and nickel uptake are differentially modulated by salicylic acid in Matricaria chamomilla plants. J Agric Food Chem 57:9848–9855

    Article  PubMed  CAS  Google Scholar 

  • Krämer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1354

    Article  PubMed  Google Scholar 

  • Krupa Z (1988) Cadmium-induced changes in the composition and structure of the light-harvesting chlorophyll a/b protein complex II in radish cotyledons. Physiol Planta 73:518–524

    Article  CAS  Google Scholar 

  • Küpper H, Küpper F, Spiller M (1996) Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J Exp Bot 47:259–266

    Article  Google Scholar 

  • Le Jean M, Schikora A, Mari S, Briat JF, Curie C (2005) A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading of Fe and NA into seeds. Plant J 44:769–782

    Article  PubMed  CAS  Google Scholar 

  • Li JY, Fu YL, Pike SM, Bao J, Tian W, Zhang Y, Chen CZ, Zhang Y, Li HM, Huang J, Li LG, Schroeder JI, Gassmann W, Gong JM (2010) The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. Plant Cell 22:1633–1646. doi:10.1105/tpc.110.075242

    Article  PubMed  CAS  Google Scholar 

  • Lin R, Wang X, Luo Y, Du W, Guo H, Yin D (2007) Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.). Chemosphere 69: 89–98

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  PubMed  CAS  Google Scholar 

  • Maksymiec W, Krupa Z (2006) The effects of short-term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana. Environ Exp Bot 57:187–194

    Article  CAS  Google Scholar 

  • Małecka A, Piechalak A, Morkunas I, Tomaszewska B (2008) Transport and localization of lead in root cells of Pisum sativum. Acta Physiol Planta 30:629–637

    Article  CAS  Google Scholar 

  • Małecka A, Piechalak A, Tomaszewska B (2009) Reactive oxygen species production and antioxidative defense system in pea root cells treated with lead ions: the whole roots level. Acta Physiol Planta 31:1053–1063

    Article  CAS  Google Scholar 

  • Masuda H, Ishimaru Y, Aung MS, Kobayashi T, Kakei Y, Takahashi M, Higuchi K, Nakanishi H, Nishizawa NK (2012) Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Sci Rep 2:543

    PubMed  CAS  Google Scholar 

  • Memon AR, Schröder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162–175

    Article  CAS  Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281

    Article  PubMed  CAS  Google Scholar 

  • Metwally A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 56:167–178

    PubMed  CAS  Google Scholar 

  • Minglin L, Yuxiu Z, Tuanyao C (2005) Identification of genes up-regulated in response to Cd exposure in Brassica juncea L. Gene 363:151–158

    Article  PubMed  CAS  Google Scholar 

  • Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653

    Article  PubMed  CAS  Google Scholar 

  • Mleczek M, Kozłowska M, Kaczmarek Z, Magdziak Z, Goliński P (2012) Cadmium and lead uptake by Salix viminalis under modified Ca/Mg ratio. Ecotoxicology 20:158–165

    Article  CAS  Google Scholar 

  • Moreno I, Norambuena L, Maturana D, Toro M, Vergara C, Orellana A, Zurita-Silva A, Ordenes VR (2008) AtHMA1 is a thapsigargin-sensitive Ca2+/heavy metal pump. J Biol Chem 283:9633–9641. doi:10.1074/jbc.M800736200

    Article  PubMed  CAS  Google Scholar 

  • Nada E, Ferjani BA, Ali R, Bechir BR, Imed M, Makki B (2007) Cadmium induced growth inhibition and alteration of biochemical parameters in almond seedlings grown in solution culture. Acta Physiol Planta 29:57–62

    Article  CAS  Google Scholar 

  • Padmaja K, Prasad DDK, Prasad ARK (1990) Inhibition of chlorophyll synthesis in Phaseolus vulgaris L. seedlings by cadmium acetate. Photosynthesis 24:399–405

    CAS  Google Scholar 

  • Pál M, Szalai G, Horváth E, Janda T, Páldi E (2002) Effect of salicylic acid during heavy metal stress. Acta Biol Szeged 46:119–120

    Google Scholar 

  • Pál M, Horváth E, Janda T, Páldi E, Szalai G (2005) Cadmium stimulates accumulation of salicylic acid and its putative precursors in maize (Zea mays L.) plants. Physiol Planta 125:356–364

    Article  CAS  Google Scholar 

  • Pál M, Horváth E, Janda T, Páldi E, Szalai G (2006) Physiological changes and defense mechanisms induced by cadmium stress in maize. J Plant Nutr Soil Sci 169:239–246

    Article  CAS  Google Scholar 

  • Palma JM, Sandalio LM, Javier Corpas F, Romero-Puertas MC, McCarthy I, del Río LA (2002) Plant proteases protein degradation and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:521–530

    Article  CAS  Google Scholar 

  • Peng JF, Song YH, Yuan P, Cui XY, Qiu GL (2009) The remediation of heavy metals contaminated sediment. J Hazard Mater 161:633–640

    Article  PubMed  CAS  Google Scholar 

  • Pich A, Scholz G (1993) The relationship between the activity of various iron-containing and iron-free enzymes and the presence of nicotianamine in tomato seedlings. Physiol Planta 88: 172–178

    Article  CAS  Google Scholar 

  • Piechalak A, Tomaszewska B, Barałkiewicz D, Małecka A (2002) Accumulation and detoxification of lead ions in legumes. Phytochemistry 60:153–162

    Article  PubMed  CAS  Google Scholar 

  • Piechalak A, Tomaszewska B, Barałkiewicz D (2003) Enhancing phytoremediative ability of Pisum sativum by EDTA application. Phytochemistry 64:1239–1251

    Article  PubMed  CAS  Google Scholar 

  • Pittman JK (2005) Managing the manganese: molecular mechanisms of manganese transport and homeostasis. New Phytol 167:733–742

    Article  PubMed  CAS  Google Scholar 

  • Popova L, Maslenkova L, Yordanova R, Krantev A, Szalai G, Janda T (2008) Salicylic acid protects photosynthesis against cadmium toxicity in pea plants. Gen Appl Plant Physiol 34: 133–148

    CAS  Google Scholar 

  • Prasad A, Kumar S, Khaliq A, Pandey A (2011) Heavy metals and arbuscular mycorrhizal (AM) fungi can alter the yield and chemical composition of volatile oil of sweet basil (Ocimum basilicum L.). Biol Fertil Soils 47:853–861

    Article  CAS  Google Scholar 

  • Rajkumar M, Noriharu A, Freitas H (2010) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160

    Article  CAS  Google Scholar 

  • Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43: 439–463

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Corpas FJ, Rodriguez-Serrano M, Gomez M, del Rio LA, Sandalio LM (2007) Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. J Plant Physiol 164:1346–1357

    Article  PubMed  CAS  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  PubMed  CAS  Google Scholar 

  • Sanità di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24:2155–2167

    Article  PubMed  CAS  Google Scholar 

  • Schaaf G (2005) A putative function for the Arabidopsis Fe–phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Plant Cell Physiol 46:762–774

    Article  PubMed  CAS  Google Scholar 

  • Shah K, Dubey RS (1997) Effect of cadmium on proline accumulation and ribonuclease activity in rice seedlings: role of proline as a possible enzyme protectant. Biol Planta 40:121–130

    Article  CAS  Google Scholar 

  • Shahzad Z, Gosti F, Frérot H, Lacombe E, Roosens N, Saumitou-Laprade P, Berthomieu P (2010) The five AhMTP1 zinc transporters undergo different evolutionary fates towards adaptive evolution to zinc tolerance in Arabidopsis halleri. PLoS Genet 6:1000911. doi:10.1371/journal.pgen.1000911

    Article  CAS  Google Scholar 

  • Singh A, Prasad SH (2011) Reduction of heavy metal load in food chain: technology assessment. Rev Environ Sci Biotechnol 10:199–214

    Article  CAS  Google Scholar 

  • Song WY, Choi KS, Kimdo Y, Geisler M, Park J, Vincenzetti V, Schellenberg M, Kim SH, Lim YP, Noh EW, Lee Y, Martinoia E (2010a) Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and long-distance zinc transport. Plant Cell 22:2237–2252

    Google Scholar 

  • Song WY, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S, Geisler M, Weder B, Rea PA, Rentsch D, Schroeder JI, Lee Y, Martinoia E (2010b) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci USA 107:21187–21192

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263–1280

    Article  PubMed  CAS  Google Scholar 

  • Talke IN, Hanikenne M, Krämer U (2006) Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167

    Article  PubMed  CAS  Google Scholar 

  • Tang S, Liao S, Guo J, Song Z, Wang R, Zhou X (2012) Growth and caesium uptake responses of Phytolacca americana Linn. and Amaranthus cruentus L. grown on caesium contaminated soil to elevated CO2 or inoculation with a plant growth promoting rhizobacterium Burkholderia sp. D54, or in combination. J Hazard Mater 198:188–197

    Article  CAS  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  PubMed  CAS  Google Scholar 

  • Vert GA (2003) Dual regulation of the Arabidopsis high-affinity root iron uptake system by local and long-distance signals. Plant Physiol 132:796–804

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Wang Y, Mahmood Q, Islam E, Jin X, Li T, Yang X, Liu D (2009) The effect of EDDS addition on the phytoextraction efficiency from Pb contaminated soil by Sedum alfredii Hance. J Hazard Mater 168:530–535

    Article  PubMed  CAS  Google Scholar 

  • Waters BM, Chu HH, Didonato RJ, Roberts LA, Eisley RB, Lahner B, Salt DE, Walker EL (2006) Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiol 141:1446–1458

    Article  PubMed  CAS  Google Scholar 

  • Weyens N, Schellingen K, Dupae J, Croes S, van der Lelie D, Vangronsveld J (2010) Can bacteria associated with willow explain differences in Cd accumulation capacity between different cultivars? J Biotechnol 150:291–292

    Article  Google Scholar 

  • Witters N, Mendelsohn RO, Van Slycken S, Weyens N, Schreurs E, Meers E, Tack F, Carleer R, Vangronsveld J (2012) Phytoremediation, a sustainable remediation technology? Conclusions from a case study. I: Energy production and carbon dioxide abatement. Biomass Bioenerg 39: 454–469

    Article  CAS  Google Scholar 

  • Wójcik M, Tukiendorf A (2011) Glutathione in adaptation of Arabidopsis thaliana to cadmium stress. Biol Planta 55:125–132

    Article  CAS  Google Scholar 

  • Wu H, Chen C, Du J, Liu H, Cui Y, Zhang Y, He Y, Wang Y, Chu C, Feng Z, Li J, Ling HQ (2012) Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots. Plant Physiol 158:790–800. doi:10.1104/pp.111.190983

    Article  PubMed  CAS  Google Scholar 

  • Yadav R, Arora P, Kumar S, Chaudhury A (2010) Perspectives for genetic engineering of poplars for enhanced phytoremediation abilities. Ecotoxicology 19:1574–1588

    Article  PubMed  CAS  Google Scholar 

  • Zhao S, Lian F, Duo L (2011) EDTA-assisted phytoextraction of heavy metals by turf grass from municipal solid waste compost using permeable barriers and associated potential leaching risk. Bioresour Technol 102:621–626

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirosław Mleczek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mleczek, M., Piechalak, A., Tomaszewska, B., Drzewiecka, K., Nuc, P. (2013). Metal/Metalloid Phytoremediation: Ideas and Future. In: Gupta, D. (eds) Plant-Based Remediation Processes. Soil Biology, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35564-6_3

Download citation

Publish with us

Policies and ethics