Skip to main content

Phytostabilization as Soil Remediation Strategy

  • Chapter
  • First Online:
Plant-Based Remediation Processes

Part of the book series: Soil Biology ((SOILBIOL,volume 35))

Abstract

Heavy metals are natural components of the terrestrial ecosystem. However, soils could become contaminated by the accumulation of heavy metal mixtures as a result of human activities. One of the most important concerns associated with heavy metals is their persistence and harmful effects to humans and the environment. Therefore, remediation is essential to mitigate the negative effects caused by the heavy metals incorporated to ecosystems, alone or as mixture. In situ remediation technologies are low-cost alternative over ex situ nonbiological remediation techniques that could adsorb, bind, or co-precipitate and/or can use plants for immobilization of toxic metals. These alternatives denote attractive and emerging technologies for site restoration. In particular, phytostabilization is a technology that immobilizes soil contaminants. They are absorbed and accumulated by roots, adsorbed onto the roots, or precipitated in the rhizosphere. In a phytoremediation study in Argentina with Sesbania virgata plants, it was observed that the main accumulation of heavy metals appeared in plant roots, and Zn is more removed from soils by S. virgata (BCF average in roots Zn > Cr > Cu). While the co-presence of metals resulted in a greater reduction in S. virgata biomass than the presence of a single metal, S. virgata tolerated and stabilized high concentrations of Cu, Zn, and Cr. In view of this tolerance, S. virgata is an excellent species to be used for heavy metal phytostabilization in contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriano DC (2001) Trace elements in terrestrial environments. Biogeochemistry, bioavailability and risks of metals, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142

    Article  CAS  Google Scholar 

  • Alloway BJ (1995) The origins of heavy metals in soils. In: Alloway BJ (ed) Heavy metals in soils, 2nd edn. Blackie Academic and Professional, London

    Chapter  Google Scholar 

  • Alvarez JM, Almendros P, Gonzalez D (2008) Residual effects of natural Zn chelates on navy bean response, Zn leaching and soil Zn status. Plant Soil 317:277–291

    Google Scholar 

  • Basta NT, McGowen SL (2004) Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ Pollut 127:73–82

    Article  PubMed  CAS  Google Scholar 

  • Basta NT, Gradwohl R, Snethen KL, Schroder JL (2001) Chemical immobilization of lead, zinc and cadmium in smelter-contaminated soils using bio solids and rock phosphate. J Environ Qual 30:1222–1230

    Article  PubMed  CAS  Google Scholar 

  • Basta NT, Ryan JA, Chaney RL (2005) Trace elements chemistry in residual-treated soil: key concepts and metal bioavailability. J Environ Qual 34:49–63

    PubMed  CAS  Google Scholar 

  • Becquer T, Quantin C, Sicot M, Boudot JP (2003) Chromium availability in ultramafic soils from New Caledonia. Sci Total Environ 301:251–261

    Article  PubMed  CAS  Google Scholar 

  • Branzini A, Zubillaga MS (2010) Assessing phytotoxicity of heavy metals in remediated soil. Int J Phytoremediation 12:335–342

    Article  PubMed  CAS  Google Scholar 

  • Branzini A, Santos González RS, Zubillaga MS (2012) Absorption and translocation of cooper, zinc and chromium by Sesbania virgata. J Environ Manage 102:50–54

    Article  PubMed  CAS  Google Scholar 

  • Brown S, Sprenger M, Maxemchuk A, Compton H (2005) Ecosystem functions in alluvial tailings after biosolids and lime addition. J Environ Qual 34:139–148

    PubMed  CAS  Google Scholar 

  • Brown A, Martínez Ortiz U, Acerbi M, Corcuera J (2006) La situación ambiental argentina 2005, 1st edn. Fundación Vida Silvestre Argentina, Buenos Aires

    Google Scholar 

  • Carpena RO, Bernal MP (2007) Claves de la fitorremediación: fitotecnologías para la recuperación de suelos. Ecosistemas 16:1–3

    Google Scholar 

  • Cerqueira B, Covelo EF, Andrade ML, Vega FA (2011) The influence of soil properties on the individual and competitive sorption and desorption of Cu and Cd. Geoderma 162:20–26

    Article  CAS  Google Scholar 

  • Chan GYS, Ye ZH, Wong MG (2003) Comparison of four Sesbania species to remediate Pb/Zn and Cu mine tailings. Environ Manage 32:246–251

    Article  PubMed  Google Scholar 

  • Enserink EL, Mass-Diepeven JL, Van-Leeuwen CJ (1991) Combined effects of metals; an ecotoxicological evaluation. Water Res 25:579–687

    Article  Google Scholar 

  • Finžgar N, Kos B, Leštan D (2006) Bioavailability and mobility of Pb after soil treatment with different remediation methods. Plant Soil Environ 52:25–34

    Google Scholar 

  • Flogeac K, Guillon E, Aplincourt M (2007) Competitive sorption of metal ions onto a north-eastern France soil. Isotherms and XAFS studies. Geoderma 139:180–189

    Article  CAS  Google Scholar 

  • Geebelen W, Adriano DC, Van der Lelie D, Mench M, Carleer R, Clijsters H, Vangronsveld J (2003) Selected bioavailability assays to test the efficacy of amendment-induced immobilization of lead in soils. Plant Soil 249:217–228

    Article  CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3:1–18

    Google Scholar 

  • Giuffré L, Ratto S, Marban L, Shonwald J, Romaniuk R (2005) Riesgo por metals pesados en horticultura urbana. Ci Suelo 23:101–106

    Google Scholar 

  • Gleyzes C, Tellier S, Astruc M (2001) Chemical characterization of lead in industrially-contaminated soils. In: Proceedings of 6th international conference biogeochemistry trace elements, Guelph

    Google Scholar 

  • Greany KM (2005) An assessment of heavy metal contamination in the marine sediments of Las Perlas Archipelago, Gulf of Panama. M.S. Thesis, School of Life Sciences Heriot-Watt University, Edinburgh, Scotland

    Google Scholar 

  • Gruiz K (2005) Soil testing triad and interactive ecotoxicity tests for contaminated soil. In: Fava F, Canepa P (eds) Soil remediation series, vol 6. INCA, Venice, Italy

    Google Scholar 

  • Gustafsson JP, Tiberg C, Edkymish A, Berggren Kleja D (2012) Modelling lead(II) sorption to ferrihydrite and soil organic matter. Environ Chem 8:485–492

    Article  Google Scholar 

  • Hashimoto Y, Matsufuru H, Takaoka M, Tanida H, Sato T (2009) Impacts of chemical amendment and plant growth on lead speciation and enzyme activities in a shooting range soil: an X-ray absorption fine structure investigation. J Environ Qual 38:1420–1428

    Article  PubMed  CAS  Google Scholar 

  • Helmisaari HS, Salemaa M, Derome J, Kiikkilä O, Uhlig C, Nieminen TM (2007) Remediation of heavy metal contaminated forest soil using recycled organic matter and native woody plants. J Environ Qual 36:1145–1153

    Article  PubMed  CAS  Google Scholar 

  • Jadia CD, Fulekar MH (2008) Phytotoxicity and remediation of heavy metals by fibrous root grass (sorghum). J Appl Biosci 10:491–499

    Google Scholar 

  • Jadia CD, Fulekar MH (2009) Phytoremediation of heavy metals: recent techniques. Afr J Biotechnol 8:921–928

    CAS  Google Scholar 

  • Jalali M, Khanlari ZV (2008) Effect of aging process on the fractionation of heavy metals in some calcareous soils of Iran. Geoderma 143:26–40

    Article  CAS  Google Scholar 

  • Kaasalainen M, Yli-Halla M (2003) Use of sequential extraction to assess metal partitioning in soils. Environ Pollut 126:225–233

    Article  PubMed  CAS  Google Scholar 

  • Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG (2008) Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ Pollut 152:686–692

    Article  PubMed  CAS  Google Scholar 

  • Kim YN, Kim KH (2010) Sequential fractionation and chemical speciation of Cd, Zn, Cu and Pb in the soils from two shooting ranges in Gyeonggi province, Korea. Pedologist 53(3):118–125

    CAS  Google Scholar 

  • Kjellström T, Nordberg GF (1978) A kinetic model of cadmium metabolism in the human being. Environ Res 16(1–3):248–269

    Article  PubMed  Google Scholar 

  • Kotas J, Stasicka Z (2000) Commentary: Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283

    Article  PubMed  CAS  Google Scholar 

  • Kulakow PA, Schwab AP, Banks MK (2000) Screening plant species for growth on weathered, petroleum hydrocarbon-contaminated sediments. Int J Phytoremediation 2:297–317

    Article  CAS  Google Scholar 

  • Kumpiene J, Ore S, Renella G, Mench M, Lagerkvist A, Maurice C (2006) Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil. Environ Pollut 144:62–69

    Article  PubMed  CAS  Google Scholar 

  • Küpper H, Kroneck PMH (2005) Heavy metal uptake by plants and cyanobacteria. In: Sigel A, Sigel H, Sigel RKO (eds) Metal ions in biological systems, Band 44, Kapitel 5. Marcel Dekker, New York

    Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    Article  PubMed  CAS  Google Scholar 

  • Lavado RS, Roriguez MB, Scheiner JD, Taboada MA, Rubio G, Alvarez R, Alconada M, Zubillaga MS (1998) Heavy metals in soils of Argentina: comparison between urban and agricultural soils. Commun Soil Sci Plant Anal 29:11–14

    Article  Google Scholar 

  • Ling W, Shen Q, Gao Y, Gu X, Yang Z (2007) Use of bentonite to control the release of copper from contaminated soils. Aust J Soil Res 45:618–623

    Article  CAS  Google Scholar 

  • Llosa R, Noriega E, Negro de Aguirre E, Kesten E (1990) Niveles de plomo, cadmio, zinc y cobre en suelos del área metropolitana y suburbana de Buenos Aires. Ci Suelo 8:3–8

    Google Scholar 

  • Luo Y, Rimmer DL (1995) Zinc-copper interaction affecting plant growth on metal contaminated soil. Environ Pollut 88:79–83

    Article  PubMed  Google Scholar 

  • Martin TA, Ruby MV (2004) Review of in situ remediation technologies for lead, zinc and cadmium in soil. Remediation 14:35–53

    Article  Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2002) Phytoremediation of metals, metalloids, and radionuclides. Adv Agron 75:1–56

    Article  CAS  Google Scholar 

  • McLaughlin JT, Luca MG, Jones MN, Dockray GJ, Thompson DG (1999) Fatty acid chain length determines CCK secretion and different effects on proximal and distal gastric motility. Gastroenterology 116:46–53

    Article  PubMed  CAS  Google Scholar 

  • Mench M, Vangronsveld J, Clijsters H, Lepp NW, Edwards R (2000) In situ metal immobilisation and phytostabilization of contaminated soils. In: Norman T, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, FL

    Google Scholar 

  • Mench M, Vangronsveld J, Beckx C, Ruttens A (2006) Progress in assisted natural remediation of an arsenic contaminated agricultural soil. Environ Pollut 144:54–61

    Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Mortvedt JJ (2000) Bioavailability of micronutrient. In: Sumner ME (ed) Handbook of soil science. CRC, Boca Raton, FL

    Google Scholar 

  • Nriagu JO (1994) Arsenic in the environment. In: Nriagu JO (ed) Parts I, Cycling and Characterization. Wiley, New York

    Google Scholar 

  • Otitoloju AA (2003) Relevance of joint action toxicity evaluations in setting realistic environmental safe limits of heavy metals. J Environ Manage 67:121–128

    Article  PubMed  Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126

    Article  CAS  Google Scholar 

  • Parrott JL, Sprague JB (1993) Patterns in toxicity of sub lethal mixtures of metal and organic chemicals determined by Microtox and by DNA, RNA and protein content of fathead minnows Pimephales promelas. Can J Fish Aquat Sci 50:2245–2253

    Article  CAS  Google Scholar 

  • Pastori GM, Foyer CH (2002) Common components, networks, and pathways of cross-tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant Physiol 129: 460–468

    Article  PubMed  CAS  Google Scholar 

  • Pierzynski GM, Sims TJ, Vance GF (2005) Soils and environmental quality, 3rd edn. CRC, Boca Raton, FL

    Google Scholar 

  • Pott A, Pott VJ (1994) Plantas do pantanal. EMBRAPA/CPAP/SPI, Corumbá

    Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Sánchez-Monedero MA, Mondini C, De Nobili M, Leita L, Roig A (2004) Land application of biosolids: soil response to different stabilization degree of the treated organic matter. Waste Manage 24:325–332

    Article  Google Scholar 

  • Sanitádi Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41: 105–130

    Article  Google Scholar 

  • Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138

    Article  CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  PubMed  CAS  Google Scholar 

  • Sharpley AN, Daniel T, Sims T, Lemunion J, Stevens R, Parry R (1999) Agricultural phosphorous and eutrophication, 2nd edn. US Department of Agriculture, Agricultural Research Service, University Parks, PA

    Google Scholar 

  • Singh OV, Labana S, Pandey G, Budhiraja R, Jain RK (2003) Phytoremediation: an overview of metallicion decontamination from soil. Appl Microbiol Biotechnol 61:405–412

    PubMed  CAS  Google Scholar 

  • Sinha S, Gupta AK (2005) Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants. Chemosphere 61:1204–1214

    Article  PubMed  CAS  Google Scholar 

  • Smith S (1996) Agricultural recycling of sewage sludge and the environment. CAB International, Wallingford, UK

    Google Scholar 

  • Sobrero MC, Ronco A (2004) Ensayo de toxicidad aguda con semillas de lechuga (Lectuca sativa L.). In: Castillo MG (ed) Ensayos toxicológicos y métodos de evaluación de calidad de aguas. Desarrollo, Ottawa

    Google Scholar 

  • Spurgeon DJ, Hopkin SP, Jones DT (1994) Effects of cadmium, copper, lead and zinc on growth, reproduction and survival of the earthworm Eisenia fetida (Savigny): assessing the environmental impact of point source metal contamination in terrestrial ecosystems. Environ Pollut 84:123–130

    Article  PubMed  CAS  Google Scholar 

  • Tandy S, Schulin R, Nowack B (2006) Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration. Environ Sci Technol 40:2753–2758

    Article  PubMed  CAS  Google Scholar 

  • USEPA (1993) Standards for the use or disposal of sewage sludge, vol 58. Environmental Protection Agency 40 CFR Part 503. Federal Register US Government Office, Washington, DC, pp 9248–9415

    Google Scholar 

  • USEPA (1995) Standards for the use or disposal of sewage sludge, vol 60. Environmental Protection Agency Federal Register US Government Office, Washington, DC, pp 54764–54770

    Google Scholar 

  • USEPA (2000) Introduction to phytoremediation. Technical report EPA 600/R-99/107. US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH

    Google Scholar 

  • VCI (2011) Copper history/future, van commodities Inc. http://trademetalfutures.com/copperhistory.html

  • Veasey EA, Organo NM, Sodero MP, Bandel G (1999) Early growth and seedling morphology of species of Sesbania scop (Leguminosae, Robinieae). Sci Agric 56:1–10

    Article  Google Scholar 

  • Vilela de Resende A, Furtini Neto AE, Curi N, Muniz JA, de Faria MR (2000) Acumulo eficiencia nutricional de macronutrientes por especies florestais de diferentes grupos sucessionais em desposta afertilizacao fosfatada. Cienc Agrotec Lavras 24:160–173

    Google Scholar 

  • Wei SH, Silva JAT, Zhou QX (2008) Agro-improving method of phytoextracting heavy metal contaminated soil. J Hazard Mater 150:662–668

    Article  PubMed  CAS  Google Scholar 

  • Yang JY, Yang XE, He ZL, Li TQ, Shentu JL, Stofella PJ (2006) Effects of pH, organic acids, and inorganic ions on lead desorption from soils. Environ Pollut 143:9–15

    Article  PubMed  CAS  Google Scholar 

  • Ye ZH, Yang ZY, Chan GY, Wong MH (2001) Growth response of Sesbania rostrata and Sesbania cannabina to sludge amended lead/zinc mine tailings. A greenhouse study. Environ Int 26:449–455

    Article  PubMed  CAS  Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    Article  PubMed  CAS  Google Scholar 

  • Zhang GL, Yang FG, Zhao YG, Zhao WJ, Yang JL, Gong ZT (2005) Historical change of heavy metals in urban soils of Nanjing, China during the past 20 centuries. Environ Int 31:913–919

    Article  PubMed  CAS  Google Scholar 

  • Zhang MK, Liu ZY, Wang H (2010) Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Commun Soil Sci Plant Anal 41:820–831

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustina Branzini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Branzini, A., Zubillaga, M.S. (2013). Phytostabilization as Soil Remediation Strategy. In: Gupta, D. (eds) Plant-Based Remediation Processes. Soil Biology, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35564-6_10

Download citation

Publish with us

Policies and ethics