Multi-agent Coordination through Mutualistic Interactions

  • Miguel Lurgi
  • David Robertson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7254)

Abstract

In this paper we present an ecologically-inspired approach to agent coordination. Mutualistic networks of interacting species in nature possess characteristics that provide the systems they represent with features of stability, minimised competition, and increased biodiversity. We take inspiration from some of the ecological mechanisms that operate at the interaction level in mutualistic interactions, and which are believed to be responsible for the emergence of these system level patterns, in order to promote this structural organisation in networks of interacting agents, enhancing in this way their cooperative abilities. We demonstrate that given plausible starting conditions, we can expect mutualistic features to appear in self-organising agent systems, and we compare them with natural ones to show how the characteristics displayed by ecologically inspired networks of agents are similar to those found in natural communities. We argue that the presence of these patterns in agent interaction networks confer these systems with properties similar to those found in mutualistic communities found in the real world.

Keywords

agents coordination ecologically-inspired interactions complex systems mutualism emergent behaviour cooperation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Almeida-Neto, M., Guimarães, P., Guimarães Jr., P.R., Loyola, R.D., Ulrich, W.: A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117(8), 1227–1239 (2008)CrossRefGoogle Scholar
  2. 2.
    Atmar, W., Patterson, B.D.: The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96(3), 373–382 (1993)CrossRefGoogle Scholar
  3. 3.
    Axelrod, R.: The dissemination of culture: A model with local convergence and global polarization. Journal of Conflict Resolution 41(2), 203 (1997)CrossRefGoogle Scholar
  4. 4.
    Bascompte, J., Jordano, P.: Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593 (2007)CrossRefGoogle Scholar
  5. 5.
    Bastolla, U., Fortuna, M.A., Pascual-Garcia, A., Ferrera, A., Luque, B., Bascompte, J.: The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458(7241), 1018–1020 (2009)CrossRefGoogle Scholar
  6. 6.
    Berlow, E.L.: Strong effects of weak interactions in ecological communities. Nature 398(6725), 330–334 (1999)CrossRefGoogle Scholar
  7. 7.
    Centola, D., González-Avella, J., Eguíluz, V., Miguel, M.S.: Homophily, cultural drift, and the co-evolution of cultural groups. Journal of Conflict Resolution 51(6), 905 (2007)CrossRefGoogle Scholar
  8. 8.
    de Pinnick Bas, A.P., Dupplaw, D., Kotoulas, S., Siebes, R.: The openknowledge kernel. International Journal of Applied Mathematics and Computer Sciences 4(3), 162–167 (2007)Google Scholar
  9. 9.
    Joppa, L.N., Montoya, J.M., Solé, R.V., Sanderson, J., Pimm, S.L.: On nestedness in ecological networks. Evolutionary Ecology Research 12(1), 35–46 (2010)Google Scholar
  10. 10.
    Lurgi, M.: Ecologically inspired agent networks. Master’s thesis, University of Edinburgh. College of Science and Engineering. School of Informatics (2010)Google Scholar
  11. 11.
    Montoya, J.M., Pimm, S.L., Solé, R.V.: Ecological networks and their fragility. Nature 442(7100), 259–264 (2006)CrossRefGoogle Scholar
  12. 12.
    Montoya, J.M., Solé, R.V.: Small world patterns in food webs. Journal of Theoretical Biology 214(3), 405–412 (2002)CrossRefGoogle Scholar
  13. 13.
    Rezende, E.L., Lavabre, J.E., Guimarães Jr., P.R., Jordano, P., Bascompte, J.: Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448(7156), 925–928 (2007)CrossRefGoogle Scholar
  14. 14.
    Robertson, D.: A Lightweight Coordination Calculus for Agent Systems. In: Leite, J., Omicini, A., Torroni, P., Yolum, P. (eds.) DALT 2004. LNCS (LNAI), vol. 3476, pp. 183–197. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Rodríguez-Gironés, M.A., Santamaría, L.: A new algorithm to calculate the nestedness temperature of presence–absence matrices. Journal of Biogeography 33(5), 924–935 (2006)CrossRefGoogle Scholar
  16. 16.
    Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)CrossRefGoogle Scholar
  17. 17.
    Vázquez, D.P., Aizen, M.A.: Asymmetric specialization: a pervasive feature of plant-pollinator interactions. Ecology 85(5), 1251–1257 (2004)CrossRefGoogle Scholar
  18. 18.
    Vázquez, D.P., Blüthgen, N., Cagnolo, L., Chacoff, N.P.: Uniting pattern and process in plant-animal mutualistic networks: a review. Annals of Botany 103(9), 1445–1457 (2009)CrossRefGoogle Scholar
  19. 19.
    Villalba, C., Zambonelli, F.: An nature-inspired approach for large-scale pervasive service ecosystems. In: Proceedings of the 4th AAMAS Workshop on Massive Multiagent Systems. IFAAMAS (May 2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Miguel Lurgi
    • 1
  • David Robertson
    • 1
  1. 1.School of InformaticsUniversity of EdinburghEdinburghUK

Personalised recommendations