Advertisement

Black-Box Complexity: Breaking the O(n logn) Barrier of LeadingOnes

  • Benjamin Doerr
  • Carola Winzen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7401)

Abstract

We show that the unrestricted black-box complexity of the n-dimensional XOR- and permutation-invariant LeadingOnes function class is O(n log(n) / loglogn). This shows that the recent natural looking O(nlogn) bound is not tight.

The black-box optimization algorithm leading to this bound can be implemented in a way that only 3-ary unbiased variation operators are used. Hence our bound is also valid for the unbiased black-box complexity recently introduced by Lehre and Witt. The bound also remains valid if we impose the additional restriction that the black-box algorithm does not have access to the objective values but only to their relative order (ranking-based black-box complexity).

Keywords

Algorithms black-box complexity query complexity runtime analysis theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search heuristics in black-box optimization. Theory of Computing Systems 39, 525–544 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Lehre, P.K., Witt, C.: Black-box search by unbiased variation. In: Proc. of Genetic and Evolutionary Computation Conference (GECCO 2010), pp. 1441–1448. ACM (2010)Google Scholar
  3. 3.
    Doerr, B., Winzen, C.: Towards a Complexity Theory of Randomized Search Heuristics: Ranking-Based Black-Box Complexity. In: Kulikov, A., Vereshchagin, N. (eds.) CSR 2011. LNCS, vol. 6651, pp. 15–28. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Doerr, B., Winzen, C.: Playing Mastermind with constant-size memory. In: Proc. of 29th International Symposium on Theoretical Aspects of Computer Science (STACS 2012), pp. 441–452. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)Google Scholar
  5. 5.
    Rudolph, G.: Convergence Properties of Evolutionary Algorithms. Kovac (1997)Google Scholar
  6. 6.
    Mühlenbein, H.: How genetic algorithms really work: Mutation and hillclimbing. In: Proc. of Parallel Problem Solving from Nature (PPSN II), pp. 15–26. Elsevier (1992)Google Scholar
  7. 7.
    Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science 276, 51–81 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Doerr, B., Johannsen, D., Kötzing, T., Lehre, P.K., Wagner, M., Winzen, C.: Faster black-box algorithms through higher arity operators. In: Proc. of Foundations of Genetic Algorithms (FOGA 2011), pp. 163–172. ACM (2011)Google Scholar
  9. 9.
    Auger, A., Doerr, B.: Theory of Randomized Search Heuristics. World Scientific (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Benjamin Doerr
    • 1
  • Carola Winzen
    • 1
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations