An Improved Memetic Algorithm for the Antibandwidth Problem

  • Eduardo Rodriguez-Tello
  • Luis Carlos Betancourt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7401)


This paper presents an Improved Memetic Algorithm (IMA) designed to compute near-optimal solutions for the antibandwidth problem. It incorporates two distinguishing features: an efficient heuristic to generate a good quality initial population and a local search operator based on a Stochastic Hill Climbing algorithm. The most suitable combination of parameter values for IMA is determined by employing a tunning methodology based on Combinatorial Interaction Testing. The performance of the fine-tunned IMA algorithm is investigated through extensive experimentation over well known benchmarks and compared with an existing state-of-the-art Memetic Algorithm, showing that IMA consistently improves the previous best-known results.


Memetic Algorithms Antibandwidth Problem Combinatorial Interaction Testing Parameter Tunning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leung, J., Vornberger, O., Witthoff, J.: On some variants of the bandwidth minimization problem. SIAM Journal on Computing 13(3), 650–667 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Yixun, L., Jinjiang, Y.: The dual bandwidth problem for graphs. Journal of Zhengzhou University 35(1), 1–5 (2003)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Hale, W.K.: Frequency assignment: Theory and applications. Proceedings of the IEEE 68(12), 1497–1514 (1980)CrossRefGoogle Scholar
  4. 4.
    Roberts, F.S.: New directions in graph theory. Annals of Discrete Mathematics 55, 13–44 (1993)CrossRefGoogle Scholar
  5. 5.
    Cappanera, P.: A survey on obnoxious facility location problems. Technical report, Uni. di Pisa (1999)Google Scholar
  6. 6.
    Burkard, R.E., Donnani, H., Lin, Y., Rote, G.: The obnoxious center problem on a tree. SIAM Journal on Computing 14(4), 498–509 (2001)zbMATHGoogle Scholar
  7. 7.
    Cohen, D.M., Dalal, S.R., Parelius, J., Patton, G.C.: The combinatorial design approach to automatic test generation. IEEE Software 13(5), 83–88 (1996)CrossRefGoogle Scholar
  8. 8.
    Miller, Z., Pritikin, D.: On the separation number of a graph. Networks 19, 651–666 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Yao, W., Ju, Z., Xiaoxu, L.: Dual bandwidth of some special trees. Journal of Zhengzhou University Natural Science Edition 35, 16–19 (2003)Google Scholar
  10. 10.
    Calamoneri, T., Missini, A., Török, L., Vrt’o, I.: Antibandwidth of complete k-ary trees. Electronic Notes in Discrete Mathematics 24, 259–266 (2006)CrossRefGoogle Scholar
  11. 11.
    Török, L.: Antibandwidth of three-dimensional meshes. Electronic Notes in Discrete Mathematics 28, 161–167 (2007)CrossRefGoogle Scholar
  12. 12.
    Raspaud, A., Schröder, H., Sykora, O., Török, L., Vrt’o, I.: Antibandwidth and cyclic antibandwidth of meshes and hypercubes. Discrete Mathematics 309(11), 3541–3552 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Bansal, R., Srivastava, K.: Memetic algorithm for the antibandwidth maximization problem. Journal of Heuristics 17(1), 39–60 (2011)zbMATHCrossRefGoogle Scholar
  14. 14.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, 1st edn. Springer (2007)Google Scholar
  15. 15.
    Davis, L.: Applying adaptive algorithms to epistatic domains. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 162–164. Morgan Kaufmann (1985)Google Scholar
  16. 16.
    Goldberg, D.E., Lingle, R.: Alleles, loci, and the travelling salesman problem. In: Proceedings of the 1st International Conference on Genetic Algorithms and their Applications, pp. 154–159. Lawrence Erlbaum Associates (1985)Google Scholar
  17. 17.
    Oliver, I.M., Smith, D.J., Holland, J.R.C.: A study of permutation crossover operators on the travelling salesman problem. In: Proceedings of the 2nd International Conference on Genetic Algorithms and their Applications, pp. 224–230. Lawrence Erlbaum Associates (1987)Google Scholar
  18. 18.
    Freisleben, B., Merz, P.: A genetic local search algorithm for solving symmetric and asymmetric traveling salesman problems. In: Proceedings of IEEE International Conference on Evolutionary Computation, pp. 616–621. IEEE Press (1996)Google Scholar
  19. 19.
    Adenso-Diaz, B., Laguna, M.: Fine-tuning of algorithms using fractional experimental design and local search. Operations Research 54(1), 99–114 (2006)zbMATHCrossRefGoogle Scholar
  20. 20.
    de Landgraaf, W.A., Eiben, A.E., Nannen, V.: Parameter calibration using meta-algorithms. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 71–78. IEEE Press (2007)Google Scholar
  21. 21.
    Gunawan, A., Lau, H.C., Lindawati: Fine-Tuning Algorithm Parameters Using the Design of Experiments Approach. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 278–292. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Gonzalez-Hernandez, L., Torres-Jimenez, J.: MiTS: A New Approach of Tabu Search for Constructing Mixed Covering Arrays. In: Sidorov, G., Hernández Aguirre, A., Reyes García, C.A. (eds.) MICAI 2010, Part II. LNCS (LNAI), vol. 6438, pp. 382–393. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Colbourn, C.J.: Combinatorial aspects of covering arrays. Le Matematiche 58, 121–167 (2004)MathSciNetGoogle Scholar
  24. 24.
    Rodriguez-Tello, E., Torres-Jimenez, J.: Memetic Algorithms for Constructing Binary Covering Arrays of Strength Three. In: Collet, P., Monmarché, N., Legrand, P., Schoenauer, M., Lutton, E. (eds.) EA 2009. LNCS, vol. 5975, pp. 86–97. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Moscato, P., Berretta, R., Cotta, C.: Memetic algorithms. In: Wiley Encyclopedia of Operations Research and Management Science. John Wiley & Sons, Inc. (2011)Google Scholar
  26. 26.
    Neri, F., Cotta, C., Moscato, P. (eds.): Handbook of Memetic Algorithms. SCI, vol. 379. Springer, Heidelberg (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Eduardo Rodriguez-Tello
    • 1
  • Luis Carlos Betancourt
    • 1
  1. 1.Information Technology LaboratoryCINVESTAV-TamaulipasVictoria Tamps.Mexico

Personalised recommendations