Advertisement

A Multilevel Tabu Search with Backtracking for Exploring Weak Schur Numbers

  • Denis Robilliard
  • Cyril Fonlupt
  • Virginie Marion-Poty
  • Amine Boumaza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7401)

Abstract

In the field of Ramsey theory, the weak Schur number WS(k) is the largest integer n for which their exists a partition into k subsets of the integers [1,n] such that there is no x < y < z all in the same subset with x + y = z. Although studied since 1941, only the weak Schur numbers WS(1) through WS(4) are precisely known, for k ≥ 5 the WS(k) are only bracketed within rather loose bounds. We tackle this problem with a tabu search scheme, enhanced by a multilevel and backtracking mechanism. While heuristic approaches cannot definitely settle the value of weak Schur numbers, they can improve the lower bounds by finding suitable partitions, which in turn can provide ideas on the structure of the problem. In particular we exhibit a suitable 6-partition of [1,574] obtained by tabu search, improving on the current best lower bound for WS(6).

Keywords

tabu search weak Schur numbers optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schur, I.: Über die kongruenz x m + y m ≡ z m (mod p). Jahresbericht der Deutschen Mathematiker Vereinigung 25, 114–117 (1916)zbMATHGoogle Scholar
  2. 2.
    Rado, R.: Some solved and unsolved problems in the theory of numbers. Math. Gaz. 25, 72–77 (1941)CrossRefGoogle Scholar
  3. 3.
    Blanchard, P.F., Harary, F., Reis, R.: Partitions into sum-free sets. In: Integers 6, vol. A7 (2006)Google Scholar
  4. 4.
    Walker, G.W.: A problem in partitioning. Amer. Math. Monthly 59, 253 (1952)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Eliahou, S., Marín, J.M., Revuelta, M.P., Sanz, M.I.: Weak Schur numbers and the search for G. W. Walker’s lost partitions. Computer and Mathematics with Applications 63, 175–182 (2012)zbMATHCrossRefGoogle Scholar
  6. 6.
    Abbott, H.L., Hanson, D.: A problem of Schur and its generalizations. Acta Arith. 20, 175–187 (1972)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bornsztein, P.: On an extension of a theorem of Schur. Acta Arith. 101, 395–399 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Glover, F.: Tabu search - part I. ORSA Journal of Computing 1(3), 190–206 (1989)zbMATHCrossRefGoogle Scholar
  9. 9.
    Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Norwell (1997)zbMATHCrossRefGoogle Scholar
  10. 10.
    Hamiez, J.P., Hao, J.K., Glover, F.W.: A study of tabu search for coloring random 3-colorable graphs around the phase transition. Int. Journal of Applied Metaheuristic Computing 1(4), 1–24 (2010)CrossRefGoogle Scholar
  11. 11.
    Walshaw, C.: Multilevel Refinement for Combinatorial Optimisation Problems. Annals Oper. Res. 131, 325–372 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Chappelon, J., Eliahou, S.: Personal communication (2010)Google Scholar
  13. 13.
    Heule, M., Maaren, H.V.: Improved version of march ks, http://www.st.ewi.tudelft.nl/sat/Sources/stable/march_pl (last accessed on May 2010)
  14. 14.
    López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace package, iterated race for automatic algorithm configuration. Technical Report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Denis Robilliard
    • 1
  • Cyril Fonlupt
    • 1
  • Virginie Marion-Poty
    • 1
  • Amine Boumaza
    • 1
  1. 1.ULCO, LISICUniv Lille Nord de FranceCalais CedexFrance

Personalised recommendations