Skip to main content

Mathematical Concepts

  • Chapter
Long-Memory Processes
  • 4480 Accesses

Abstract

In this chapter we present some mathematical concepts that are useful when deriving limit theorems for long-memory processes.

We start with a general description of univariate orthogonal polynomials in Sect. 3.1, with particular emphasis on Hermite polynomials in Sect. 3.1.2. Under suitable conditions, a function G can be expanded into a series

$$G(x)=\sum_{j=0}^{\infty}g_j H_j(x) $$

with respect to an orthogonal basis consisting of Hermite polynomials H j (⋅) (\(j\in\mathbb{N}\)). Such expansions are used to study sequences G(X t ) where X t (\(t\in\mathbb{Z}\)) is a Gaussian process with long memory (see Sect. 4.2.3). Hermite polynomials can also be extended to the multivariate case. This is discussed in Sect. 3.2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramovich, F., Sapatinas, T., & Silverman, B. W. (1998). Wavelet thresholding via a Bayesian approach. Journal of the Royal Statistical Society, 60(4), 725–749.

    Article  MathSciNet  MATH  Google Scholar 

  • Abramowitz, M. & Stegun, I. A. (Eds.) (1965). Handbook of mathematical functions with formulas, graphs, and mathematical tables (p. 773). New York: Dover.

    Google Scholar 

  • Adler, R. J. (1981). The geometry of random fields. New York: Wiley.

    MATH  Google Scholar 

  • Anderson, Ch. A. (1967). Some properties of Appell-like polynomials. Journal of Mathematical Analysis and Applications, 19, 475–491.

    Article  MathSciNet  MATH  Google Scholar 

  • Antoniadis, A. & Oppenheim, G. (Eds.) (1995). Wavelets and statistics. Lecture notes in statistics (Vol. 103). Heidelberg: Springer.

    MATH  Google Scholar 

  • Appell, P. (1880). Sur une classe de polynômes. Annales Scientifiques de l’École Normale Supérieure, 2e série, 9, 119–144.

    MathSciNet  Google Scholar 

  • Appell, P. (1881). Sur des polynômes de deux variables analogues aux polynômes de Jacobi. Archiv der Mathematik und Physik, 66, 238–245.

    MATH  Google Scholar 

  • Arcones, M. A. (1994). Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors. Annals of Probability, 22(4), 2242–2274.

    Article  MathSciNet  MATH  Google Scholar 

  • Avram, F., & Taqqu, M. S. (1987). Noncentral limit theorems and Appell polynomials. Annals of Probability, 15(2), 767–775.

    Article  MathSciNet  MATH  Google Scholar 

  • Banach, S. (1948). Kurs funktsionalnogo analiza (A course of functional analysis). Kiev.

    Google Scholar 

  • Barndorff-Nielsen, O., & Pedersen, B. V. (1979). The bivariate Hermite polynomials up to order six. Scandinavian Journal of Statistics, 6(3), 127–128.

    MathSciNet  MATH  Google Scholar 

  • Bateman, G., & Erdelyi, A. (1974). Higher transcendental functions: Bessel functions, parabolic-cylinder functions, orthogonal polynomials. Moscow: Nauka. (In Russian).

    Google Scholar 

  • Beran, J., & Schützner, M. (2008). The effect of long memory in volatility on location estimation. Sankhya, Series B, 70(1), 84–112.

    MATH  Google Scholar 

  • Besicovitch, A. S. (1928). On the fundamental geometrical properties of linearly measurable plain sets of points. Mathematische Annalen, 98, 422–464.

    Article  MathSciNet  Google Scholar 

  • Blanke, D. (2004). Local Hölder exponent estimation for multivariate continuous time processes. Journal of Nonparametric Statistics, 16(1–2), 227–244.

    Article  MathSciNet  MATH  Google Scholar 

  • Boas, R. P. (1954). Entire functions. New York: Academic Press.

    MATH  Google Scholar 

  • Boas, R. P., & Buck, R. C. (1964). Polynomial expansions of analytic functions. New York: Academic Press.

    Book  MATH  Google Scholar 

  • Bourbaki, N. (1976). Elements of mathematics, functions of a real variable. Reading: Addison-Wesley. (Translated from French).

    Google Scholar 

  • Brillinger, D. (1994). Uses of cumulants in wavelet analysis. Proceedings of SPIE, Advanced Signal Processing, 2296, 2–18.

    Google Scholar 

  • Brillinger, D. (1996). Some uses of cumulants in wavelet analysis. Nonparametric Statistics, 6, 93–114.

    Article  MathSciNet  MATH  Google Scholar 

  • Chan, G., & Wood, A. T. A. (1997). Increment-based estimators of fractal dimension for two-dimensional surface data. Statistica Sinica, 10, 343–376.

    MathSciNet  Google Scholar 

  • Chan, G., & Wood, A. T. A. (2004). Estimation of fractal dimension for a class of non-Gaussian stationary processes and fields. The Annals of Statistics, 32(3), 1222–1260.

    Article  MathSciNet  MATH  Google Scholar 

  • Chihara, T. S. (1978). An introduction to orthogonal polynomials. New York: Gordon and Breach.

    MATH  Google Scholar 

  • Chung, C. F. (1996a). Estimating a generalized long memory process. Journal of Econometrics, 73, 237–259.

    Article  MathSciNet  MATH  Google Scholar 

  • Cohen, A., & Ryan, R. (1995). Wavelets and multiscale signal processing. London: Chapman & Hall.

    MATH  Google Scholar 

  • Constantine, A. G., & Hall, P. (1994). Characterizing surface smoothness via estimation of effective fractal dimension. Journal of the Royal Statistical Society, Series B, 56, 97–113.

    MathSciNet  MATH  Google Scholar 

  • Daubechies, I. (1992). CBMS-NSF regional conference series in applied mathematics: Vol. 61. Ten lectures on wavelets. Philadelphia: Society for Industrial and Applied Mathematics (SIAM). xx+357 pp.

    Book  MATH  Google Scholar 

  • Davies, S., & Hall, P. (1999). Fractal analysis of surface roughness by using spatial data. Journal of the Royal Statistical Society, Series B, 61, 3–37.

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho, D. L., & Johnstone, I. M. (1994). Ideal spatial adaptation via wavelet shrinkage. Biometrika, 81, 425–455.

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho, D. L., & Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association, 90(432), 1200–1224.

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho, D. L., & Johnstone, I. M. (1997). Wavelet threshold estimators for data with correlated noise. Journal of the Royal Statistical Society, Series B, 59(2), 319–351.

    Article  MathSciNet  Google Scholar 

  • Donoho, D. L., Johnstone, I. M., Kerkyacharian, G., & Picard, D. (1995). Wavelet shrinkage: asymptopia? (with discussion). Journal of the Royal Statistical Society, Series B. Methodological, 57, 301–369.

    MathSciNet  MATH  Google Scholar 

  • El Attar, R. (2006). Special functions and orthogonal polynomials. Morrisville: Lulu Press.

    Google Scholar 

  • Falconer, K. (2003). Fractal geometry: mathematical foundations and applications (2nd ed.). Chichester: Wiley.

    Book  MATH  Google Scholar 

  • Feuerverger, A., Hall, P., & Wood, A. T. A. (1994). Estimation of fractal index and fractal dimension of a Gaussian process by counting the number of level crossings. Journal of Time Series Analysis, 15, 587–606.

    Article  MathSciNet  MATH  Google Scholar 

  • Gabor, D. (1946). Theory of communication. Proceedings of the Institution of Electrical Engineers, 93, 429–457.

    Google Scholar 

  • Giraitis, L. (1985). Central limit theorem for functionals of a linear process. Lithuanian Mathematical Journal, 25(1), 25–35.

    Article  MathSciNet  Google Scholar 

  • Giraitis, L., & Leipus, R. (1995). A generalized fractionally differencing approach in long memory modeling. Lithuanian Mathematical Journal, 35, 65–81.

    Article  MathSciNet  Google Scholar 

  • Giraitis, L., & Surgailis, D. (1986). Multivariate Appell polynomials and the central limit theorem. In Progr. probab. statist.: Vol. 11. Dependence in probability and statistics (pp. 21–71). Boston: Birkhäuser.

    Google Scholar 

  • Gneiting, T., & Schlather, M. (2004). Stochastic models which separate fractal dimension and Hurst effect. SIAM Review, 46, 269–282.

    Article  MathSciNet  MATH  Google Scholar 

  • Gray, H. L., Zhang, N.-F., & Woodward, W. A. (1989). On generalized fractional processes. Journal of Time Series Analysis, 10, 233–257.

    Article  MathSciNet  MATH  Google Scholar 

  • Gray, H. L., Zhang, N.-F., & Woodward, W. A. (1994). On generalized fractional processes—a correction. Journal of Time Series Analysis, 15(5), 561–562.

    Article  MathSciNet  MATH  Google Scholar 

  • Grossmann, A., & Morlet, J. (1985). Decomposition of functions into wavelets of constant shape and related transforms. In L. Streit (Ed.), Mathematics and physics, lectures on recent results, River Edge: Word Scientific.

    Google Scholar 

  • Haar, A. (1910). Zur Theorie der orthogonalen Funktionensysteme. Mathematische Annalen, 69, 331–371.

    Article  MathSciNet  MATH  Google Scholar 

  • Hall, P. (1995). On the effect of measuring a self-similar process. SIAM Journal on Applied Mathematics, 55(3), 800–808.

    Article  MathSciNet  MATH  Google Scholar 

  • Hall, P., & Patil, P. (1996a). On the choice of smoothing parameter, threshold and truncation in nonparametric regression by nonlinear wavelet methods. Journal of the Royal Statistical Society, Series B, 58, 361–377.

    MathSciNet  MATH  Google Scholar 

  • Hall, P., & Patil, P. (1996b). Effect of threshold rules on performance of wavelet-based curve estimators. Statistica Sinica, 6, 331–345.

    MathSciNet  MATH  Google Scholar 

  • Hall, P., & Roy, R. (1994). On the relationship between fractal dimension and fractal index for stationary stochastic processes. The Annals of Applied Probability, 4, 241–253.

    Article  MathSciNet  MATH  Google Scholar 

  • Hall, P., Matthews, D., & Platen, E. (1996). Algorithms for analyzing nonstationary time series with fractal noise. Journal of Computational and Graphical Statistics, 5, 351–364.

    MathSciNet  Google Scholar 

  • Härdle, W., Kerkyacharian, G., Picard, D., & Tsybakov, A. (1998). Wavelets, approximation, and statistical applications. Lecture notes in statistics. New York: Springer.

    Book  MATH  Google Scholar 

  • Hausdorff, F. (1918). Dimension und äusseres Mass. Mathematische Annalen, 79(1–2), 157–179.

    Article  MathSciNet  MATH  Google Scholar 

  • Heil, C. E., & Walnut, D. F. (1989). Continuous and discrete wavelet transforms. SIAM Review, 31, 628–666.

    Article  MathSciNet  MATH  Google Scholar 

  • Istas, J., & Lang, G. (1997). Quadratic variations and estimation of the local Hölder index of a Gaussian process. Annales de L’Institut Henri Poincare, Probabilites Et Statistiques, 33, 407–436.

    Article  MathSciNet  MATH  Google Scholar 

  • Jackson, D. (1941). Fourier series and orthogonal polynomials. New York: Dover.

    Google Scholar 

  • Jackson, D. (2004). Fourier series and orthogonal polynomials. New York: Dover.

    MATH  Google Scholar 

  • Johnstone, I. M. (1999). Wavelet threshold estimators for correlated data and inverse problems: adaptivity results. Statistica Sinica, 9, 51–83.

    MathSciNet  MATH  Google Scholar 

  • Johnstone, I. M., & Silverman, B. W. (1997). Wavelet threshold estimators for data with correlated noise. Journal of the Royal Statistical Society, Series B, 59, 319–351.

    Article  MathSciNet  MATH  Google Scholar 

  • Kazmin, Yu. A. (1969a). On expansions in series of Appell polynomials. Matematičeskie Zametki, 5(5), 509–520.

    MathSciNet  Google Scholar 

  • Kazmin, Yu. A. (1969b). On Appell polynomials. Mathematical Notes, 6(2), 556–562.

    Article  MathSciNet  Google Scholar 

  • Kent, J. T., & Wood, A. T. A. (1997). Estimating the fractal dimension of a locally self-similar Gaussian process by using increments. Journal of the Royal Statistical Society, Series B, 59, 679–699.

    MathSciNet  MATH  Google Scholar 

  • Kôno, N. (1986). Hausdorff dimension of sample paths for self-similar processes. In E. Eberlein & M. S. Taqqu (Eds.), Dependence in probability and statistics (pp. 109–117). Boston: Birkhäuser.

    Google Scholar 

  • Leonenko, N. N., Sakhno, L., & Taufer, E. (2001). On Kaplan–Meier estimator of long-range dependent sequences. Statistical Inference for Stochastic Processes, 4(1), 17–40.

    Article  MathSciNet  MATH  Google Scholar 

  • Leonenko, N. N., Sakhno, L., & Taufer, E. (2002). Product-limit estimator for long- and short-range dependent sequences under gamma type subordination. Random Operators and Stochastic Equations, 10(4), 301–320 (B).

    Article  MathSciNet  MATH  Google Scholar 

  • Lévy, P. (1953). Random functions: general theory with special reference to Laplacian random functions. In Univ. Calif. Publ. in Statist. (Vol. 1, pp. 331-390).

    Google Scholar 

  • Mallat, S. (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Analysis and Machine Intelligence, 11, 674–693.

    Article  MATH  Google Scholar 

  • Malyshev, V. A., & Minlos, R. A. (1991). Gibbs Random Fields. Dordrecht: Kluwer Academic.

    Book  MATH  Google Scholar 

  • Mandelbrot, B. B. (1977). Fractals: form, chance and dimension. San Francisco: Freeman.

    MATH  Google Scholar 

  • Mandelbrot, B. B. (1983). The fractal geometry of nature. San Francisco: Freeman.

    Google Scholar 

  • Mandelbrot, B. B., & van Ness, J. W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Review, 10(4), 422–437.

    Article  MathSciNet  MATH  Google Scholar 

  • Mandelbrot, B. B., & Wallis, J. R. (1968a). Noah, Joseph and operational hydrology. Water Resources Research, 4(5), 909–918.

    Article  Google Scholar 

  • Mandelbrot, B. B., & Wallis, J. R. (1968b). Robustness of the rescaled range R/S and the measurement of non-cyclic long-run statistical dependence. Water Resources Research, 5, 967–988.

    Article  Google Scholar 

  • Mandelbrot, B. B., & Wallis, J. R. (1969a). Computer experiments with fractional Gaussian noises. Water Resources Research, 5(1), 228–267.

    Article  Google Scholar 

  • Mandelbrot, B. B., & Wallis, J. R. (1969b). Some long-run properties of geophysical records. Water Resources Research, 5, 321–340.

    Article  Google Scholar 

  • Mandelbrot, B. B., & Wallis, J. R. (1969c). Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence. Water Resources Research, 5, 967–988.

    Article  Google Scholar 

  • Manstavičius, M. (2007). Hausdorff–Besicovitch dimension of graphs and p-variation of some Lévy processes. Bernoulli, 13(1), 40–53.

    Article  MathSciNet  MATH  Google Scholar 

  • McKean, H. P. (1973). Geometry of differential space. Annals of Probability, 1(2), 197–206.

    Article  MathSciNet  MATH  Google Scholar 

  • Meixner, J. (1934). Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion. Journal of the London Mathematical Society, 1(9), 6–13.

    Article  MathSciNet  Google Scholar 

  • Meyer, Y., Sellan, F., & Taqqu, M. S. (1999). Wavelets, generalized white noise and fractional integration: the synthesis of fractional Brownian motion. Journal of Fourier Analysis and Applications, 5(5), 465–494.

    Article  MathSciNet  MATH  Google Scholar 

  • Morlet, J., Arens, G., Fourgeau, E., & Giard, D. (1982). Wave propagation and sampling theory. Geophysics, 47, 203–236.

    Article  Google Scholar 

  • Neumann, M. H., & von Sachs, R (1995). Wavelet thresholding: beyond the Gaussian i.i.d. situation. In A. Antoniadis & G. Oppenheim (Eds.), Lecture notes in statistics: Vol. 103. Wavelets and statistics (pp. 301–329). New York: Springer.

    Chapter  Google Scholar 

  • Nolan, J. P. (1988). Path properties of index-β stable fields. The Annals of Probability, 16(4), 1596–1607.

    Article  MathSciNet  MATH  Google Scholar 

  • Ozhegov, V. B. (1965). On generalized Appell polynomials. In Investigations in modern problems of the constructive theory of functions, Baku (pp. 595–601). (In Russian).

    Google Scholar 

  • Ozhegov, V. B. (1967). On certain extremal properties of generalized Appell polynomials. Doklady Akademii Nauk SSSR, 159(5), 985–987.

    Google Scholar 

  • Percival, D. P., & Walden, A. T. (2000). Wavelet methods for time series analysis. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Pinsky, M. A. (2002). Introduction to Fourier analysis and wavelets. The Brooks/Cole series in advanced mathematics. Pacific Grove: Brooks/Cole.

    MATH  Google Scholar 

  • Pipiras, V., & Taqqu, M. S. (2000a). Integration questions related to fractional Brownian motion. Probability Theory and Related Fields, 118(2), 251–291.

    Article  MathSciNet  MATH  Google Scholar 

  • Pipiras, V., & Taqqu, M. S. (2003). Fractional calculus and its connect on to fractional Brownian motion. In Long range dependence (pp. 166–201). Basel: Birkhäuser.

    Google Scholar 

  • Pipiras, V., Taqqu, M. S., & Levy, J. B. (2004). Slow, fast and arbitrary growth conditions for renewal-reward processes when both the renewals and the rewards are heavy-tailed. Bernoulli, 10(1), 121–163.

    Article  MathSciNet  MATH  Google Scholar 

  • Ramm, A. G. (1980). Theory and applications of some new classes of integral equations. New York: Springer.

    Book  MATH  Google Scholar 

  • Rodrigues, O. (1816). De l’attraction des sphéroïdes. Correspondence sur l’Ecole Impériale Polytechnique, 3(3), 361–385.

    Google Scholar 

  • Samko, S. G., Kilbas, A. A., & Marichev, O. I. (1987). Integrals and derivatives of fractional order and some its applications. Minsk: Nauka i Tekhnika or fractional integrals and derivatives theory and applications. New York: Gordon and Breach (1993).

    Google Scholar 

  • Samorodnitsky, G., & Taqqu, M. S. (1994). Stable non-Gaussian random processes: stochastic models with infinite variance. New York: Chapman & Hall/CRC Press.

    MATH  Google Scholar 

  • Schützner, M. (2006). Appell-Polynome und Grenzwertsätze. Diploma Thesis, University of Konstanz.

    Google Scholar 

  • Schützner, M. (2009). Asymptotic statistical theory for long memory volatility models. Ph.D. thesis, University of Konstanz.

    Google Scholar 

  • Smith, R. L. (1992). Estimating dimension in noisy chaotic time series. Journal of the Royal Statistical Society, 54(2), 329–351.

    MathSciNet  MATH  Google Scholar 

  • Steeb, W.-H. (1998). Hilbert spaces, wavelets, generalised functions and modern quantum mechanics. Dordrecht: Kluwer Academic.

    Book  MATH  Google Scholar 

  • Strang, G. (1989). Wavelets and dilation equations: a brief introduction. SIAM Review, 31(4), 614–627.

    Article  MathSciNet  MATH  Google Scholar 

  • Szegö, G. (1939). Orthogonal polynomials. Colloquium publications. Providence: Am. Math. Soc.

    Google Scholar 

  • Szegö, G. (1974). Orthogonal polynomials (3rd ed.). Providence: Am. Math. Soc.

    Google Scholar 

  • Talagrand, M. (1995). Hausdorff measure of trajectories of multiparameter fractional Brownian motion. Annals of Probability, 23, 767–775.

    Article  MathSciNet  MATH  Google Scholar 

  • Taqqu, M. S. (1978). A representation for self-similar processes. Stochastic Processes and Their Applications, 7(1), 55–64.

    Article  MathSciNet  MATH  Google Scholar 

  • Taqqu, M. S. (1979). Convergence of integrated processes of arbitrary Hermite rank. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 50, 53–83.

    Article  MathSciNet  MATH  Google Scholar 

  • Taqqu, M. S. (2003). Fractional Brownian motion and long-range dependence. In Theory and applications of long-range dependence (pp. 5–38). Boston: Birkhäuser.

    Google Scholar 

  • Taylor, C. C., & Taylor, S. J. (1991). Estimating the dimension of a fractal. Journal of the Royal Statistical Society, 53(2), 353–364.

    MathSciNet  MATH  Google Scholar 

  • Veitsch, D. N., Taqqu, M. S., & Abry, P. (2000). Meaningful MRA initialisation for discrete time series. Signal Processing, 80(9), 1971–1983.

    Article  Google Scholar 

  • Vidakovic, B. (1999). Statistical modeling by wavelets. Wiley series in probability and statistics. New York: Wiley.

    Book  MATH  Google Scholar 

  • Wackernagel, H. (1998). Multivariate geostatistics (2nd ed.). Berlin: Springer.

    Book  MATH  Google Scholar 

  • Withers, C. S. (2000). A simple expression for the multivariate Hermite polynomials. Statistics & Probability Letters, 47(2), 165–169.

    Article  MathSciNet  MATH  Google Scholar 

  • Woodward, W. A., Cheng, Q. C., & Gray, H. L. (1998). A k-factor GARMA long-memory model. Journal of Time Series Analysis, 19(5), 485–504.

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao, Y. (1997a). Hausdorff measure of the graph of fractional Brownian motion. Mathematical Proceedings of the Cambridge Philosophical Society, 122, 565–576.

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao, Y. (1997b). Hausdorff-type measures of the sample paths of fractional Brownian motion. Stochastic Processes and Their Applications, 74, 251–272.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beran, J., Feng, Y., Ghosh, S., Kulik, R. (2013). Mathematical Concepts. In: Long-Memory Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35512-7_3

Download citation

Publish with us

Policies and ethics