Skip to main content

Definition of Long Memory

  • Chapter
Long-Memory Processes

Abstract

A long time before suitable stochastic processes were available, deviations from independence that were noticeable far beyond the usual time horizon were observed, often even in situations where independence would have seemed a natural assumption. For instance, the Canadian–American astronomer and mathematician Simon Newcomb (Astronomical constants (the elements of the four inner planets and the fundamental constants of astronomy), 1895) noticed that in astronomy errors typically affect whole groups of consecutive observations and therefore drastically increase the “probable error” of estimated astronomical constants so that the usual \(\sigma/\sqrt{n}\)-rule no longer applies. Although there may be a number of possible causes for Newcomb’s qualitative finding, stationary long-memory processes provide a plausible “explanation”. Similar conclusions were drawn before by Peirce (Theory of errors of observations, pp. 200–204, 1873) (see also the discussion of Peirce’s data by Wilson and Hilferty (Proc. Natl. Acad. Sci. USA 15(2):120–125, 1929) and later in the book by Mosteller and Tukey (Data analysis and regression: a second course in statistics, 1977) in a section entitled “How \(\sigma/\sqrt{n}\) can mislead”). Newcomb’s comments were confirmed a few years later by Pearson (Philosophical transactions of the royal society of London, pp. 235–299, 1902), who carried out experiments simulating astronomical observations. Using an elaborate experimental setup, he demonstrated not only that observers had their own personal bias, but also each individual measurement series showed persisting serial correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad, Z., Bhartia, P. K., & Krotkov, N. (2004). Spectral properties of backscattered UV radiation in cloudy atmospheres. Journal of Geophysical Research, 109, D01201. doi:10.1029/2003JD003395.

    Article  Google Scholar 

  • Allan, D. W. (1966). Statistics of atomic frequency clocks. Proceedings of the IEEE, 54, 221–230.

    Article  Google Scholar 

  • Baillie, R. T., Bollerslev, T., & Mikkelsen, H. O. (1996a). Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 74(1), 3–30.

    Article  MathSciNet  MATH  Google Scholar 

  • Bajšanski, B., & Karamata, J. (1968/1969). Regularly varying functions and the principle of equicontinuity (pp. 235–242). Publ. Ramanujan Inst., 1.

    Google Scholar 

  • Beran, J. (1994a). Statistics for long-memory processes. Monographs on statistics and applied probability (Vol. 61). New York: Chapman and Hall/CRC.

    Google Scholar 

  • Beran, J., & Ocker, D. (1999). SEMIFAR forecasts, with applications to foreign exchange rates. Journal of Statistical Planning and Inference, 80, 137–153.

    Article  MathSciNet  MATH  Google Scholar 

  • Beran, J., & Ocker, D. (2001). Volatility of stock market indices—an analysis based on SEMIFAR models. Journal of Business & Economic Statistics, 19(1), 103–116.

    Article  MathSciNet  Google Scholar 

  • Beran, J., Ghosh, S., & Schell, D. (2009). On least squares estimation for long-memory lattice processes. Journal of Multivariate Analysis, 100(10), 2178–2194.

    Article  MathSciNet  MATH  Google Scholar 

  • Berche, B., Henkel, M., & Kenna, R. (2009). Critical phenomena: 150 years since Cagniard de la Tour. arXiv:0905.1886v1.

  • Besicovitch, A. S. (1929). On linear sets of points of fractional dimension. Mathematische Annalen, 101(1), 161–193.

    Article  MathSciNet  MATH  Google Scholar 

  • Besicovitch, A. S., & Ursell, H. D. (1937). Sets of fractional dimensions. Journal of the London Mathematical Society, 12(1), 18–25.

    Google Scholar 

  • Bingham, N. H., Goldie, C. M., & Teugels, J. L. (1989). Regular variation. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Boissy, Y., Bhattacharyya, B. B., Li, X., & Richardson, G. D. (2005). Parameter estimates for fractional autoregressive spatial processes. The Annals of Statistics, 33(6), 2553–2567.

    Article  MathSciNet  MATH  Google Scholar 

  • Bollerslev, T., & Mikkelsen, H. O. (1996). Modeling and pricing long memory in stock market volatility. Journal of Econometrics, 73(1), 151–184.

    Article  MathSciNet  MATH  Google Scholar 

  • Cantor, G. (1883). Über unendliche, lineare Punktmannigfaltigkeiten V. Mathematische Annalen, 51, 545–591.

    Article  MathSciNet  Google Scholar 

  • Cassandro, M., & Jona-Lasinio, G. (1978). Critical point behaviour and probability theory. Advances in Physics, 27(6), 913–941.

    Article  Google Scholar 

  • Davydov, Yu. A. (1970a). The invariance principle for stationary processes. Teoriâ Veroâtnostej I Ee Primeneniâ, 15, 498–509 (Russian).

    MATH  Google Scholar 

  • Davydov, Ju. A. (1970b). The invariance principle for stationary processes. Theory of Probability and Its Applications, 15, 487–498.

    Article  Google Scholar 

  • Ding, Z., & Granger, C. W. J. (1996). Modeling volatility persistence of speculative returns: a new approach. Journal of Econometrics, 73(1), 185–215.

    Article  MathSciNet  MATH  Google Scholar 

  • Dobrushin, R. L., & Major, P. (1979). Non-central limit theorems for nonlinear functionals of Gaussian fields. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 50(1), 27–52.

    Article  MathSciNet  MATH  Google Scholar 

  • Domb, C. (1985). Critical phenomena: a brief historical survey. Contemporary Physics, 26(1), 49–72.

    Article  Google Scholar 

  • Donoho, D. L., & Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association, 90(432), 1200–1224.

    Article  MathSciNet  MATH  Google Scholar 

  • du Bois-Reymond, P. (1880). Der Beweis des Fundamentalsatzes der Integralrechnung. Mathematische Annalen, 16, 115–128.

    Article  MathSciNet  MATH  Google Scholar 

  • Embrechts, P., & Maejima, M. (2002). Self-similar processes. Princeton: Princeton University Press.

    Google Scholar 

  • Embrechts, P., Klüppelberg, C., & Mikosch, T. (1997). Modelling extremal events. New York: Springer.

    Book  MATH  Google Scholar 

  • Feller, W. (1951). The asymptotic distributions of the range of sums of independent random variables. The Annals of Mathematical Statistics, 22, 427–432.

    Article  MathSciNet  MATH  Google Scholar 

  • Galán, R. F., Weidert, M., Menzel, R., Herz, A. V. M., & Galizia, C. G. (2006). Sensory memory for odors is encoded in spontaneous correlated activity between olfactory Glomeruli. Neural Computation, 18, 10–25.

    Article  MATH  Google Scholar 

  • Galizia, C. G., & Menzel, R. (2001). The role of Glomeruli in the neural representation of odours: results from optical recording studies. Journal of Insect Physiology, 47, 115–130.

    Article  Google Scholar 

  • Ghosh, S., & Samorodnitsky, G. (2010). Long strange segments, ruin probabilities and the effect of memory on moving average processes? Stochastic Processes and Their Applications, 120(12), 2302–2330.

    Article  MathSciNet  MATH  Google Scholar 

  • Giraitis, L., & Robinson, P. M. (2001). Whittle estimation of ARCH models. Econometric Theory, 17, 608–631.

    Article  MathSciNet  MATH  Google Scholar 

  • Giraitis, L., & Surgailis, D. (2002). ARCH-type bilinear models with double long memory. Stochastic Processes and Their Applications, 100, 275–300.

    Article  MathSciNet  MATH  Google Scholar 

  • Giraitis, L., Kokoska, P., & Leipus, R. (2000a). Stationary ARCH models: dependence structure and central limit theorem. Econometric Theory, 16, 3–22.

    Article  MathSciNet  MATH  Google Scholar 

  • Giraitis, L., Leipus, R., Robinson, P. M., & Surgailis, D. (2004). LARCH, leverage and long memory. Journal of Financial Econometrics, 2, 177–210.

    Article  Google Scholar 

  • Giraitis, L., Leipus, R., & Surgailis, D. (2006). Recent advances in ARCH modelling. In G. Teyssière & A. P. Kirman (Eds.), Long memory in economics (pp. 3–38). Berlin: Springer.

    Google Scholar 

  • Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. Ch., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C. K., & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 101(23), e215–e220. (Circulation electronic pages; http://circ.ahajournals.org/cgi/content/full/101/23/e215); 2000 June 13. PMID: 10851218; doi:10.1161/01.CIR.101.23.e215.

    Article  Google Scholar 

  • Granger, C. W. J. (1966). The typical spectral shape of an economic variable. Econometrica, 34, 150–161.

    Article  Google Scholar 

  • Granger, C. W. J. (1995). Non-linear relationships between non-stationary processes. Econometrica, 63, 265–279.

    Article  MathSciNet  MATH  Google Scholar 

  • Granger, C. W. J., & Ding, Z. (1996). Varieties of long-memory models. Journal of Econometrics, 73(1), 61–77.

    Article  MathSciNet  MATH  Google Scholar 

  • Granger, C. W. J., & Joyeux, R. (1980). An introduction to long-range time series models and fractional differencing. Journal of Time Series Analysis, 1, 15–30.

    Article  MathSciNet  MATH  Google Scholar 

  • Hall, P. (1997). Defining and measuring long-range dependence. In C. D. Cutler & D. T. Kaplan (Eds.), Nonlinear dynamics and time series (fields inst. commun. 11) (pp. 153–160). Providence: Am. Math. Soc.

    Google Scholar 

  • Hausdorff, F. (1918). Dimension und äusseres Mass. Mathematische Annalen, 79(1–2), 157–179.

    Article  MathSciNet  MATH  Google Scholar 

  • Hausdorff, J. M., Mitchell, S. L., Firtion, R., Peng, C. K., Cudkowicz, M. E., Wei, J. Y., & Goldberger, A. L. (1997). Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington’s disease. Journal of Applied Physiology, 82, 262–269.

    Google Scholar 

  • Hausdorff, J. M., Lertratanakul, A., Cudkowicz, M. E., Peterson, A. L., Kaliton, D., & Goldberger, A. L. (2000). Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis. Journal of Applied Physiology, 88, 2045–2053.

    Google Scholar 

  • Heyde, C. C., & Yang, Y. (1997). On defining long-range dependence. Journal of Applied Probability, 34(4), 939–944.

    Article  MathSciNet  MATH  Google Scholar 

  • Hosking, J. R. M. (1981). Fractional differencing. Biometrika, 68, 165–176.

    Article  MathSciNet  MATH  Google Scholar 

  • Hurst, H. E. (1951). Long term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers, 116, 770–779.

    Google Scholar 

  • Hurst, H. E., Black, R. P., & Simaika, Y. M. (1965). Long-term storage: an experimental study. London: Constable Press.

    Google Scholar 

  • Ising, E. (1924). Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik, 31, 253.

    Article  Google Scholar 

  • Jeffreys, H. (1939). Theory of probability. Oxford: Clarendon Press.

    Google Scholar 

  • Jeffreys, H. (1948). Theory of probability. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Jeffreys, H. (1961). Theory of probability. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Joerges, J., Küttner, A., Galizia, C. G., & Menzel, R. (1997). Representations of odours and odour mixtures visualized in the honeybee brain. Nature, 387, 285–288.

    Article  Google Scholar 

  • Karamata, J. (1930a). Sur un mode de croissance régulière des fonctions. Mathematica (Cluj), 4, 38–53.

    MATH  Google Scholar 

  • Karamata, J. (1930b). Sur certains “Tauberian theorems” de M. M. Hardy et Littlewood. Mathematica (Cluj), 3, 33–48.

    MATH  Google Scholar 

  • Karamata, J. (1933). Sur un mode de croissance régulière. Théorèmes fondamentaux. Bulletin de la Société Mathématique de France, 61, 55–62.

    MathSciNet  Google Scholar 

  • Kolmogorov, A. N. (1940). Wienersche Spiralen und einige andere interessante Kurven in Hilbertschen Raum. Comptes Rendus (Doklady) Academy of Sciences of the USSR (N.S.), 26, 115–118.

    Google Scholar 

  • Kolmogorov, A. N. (1941). Local structure of turbulence in fluid for very large Reynolds numbers. In S. K. Friedlander & L. Topper (Eds.), Transl. in turbulence (pp. 151–155). New York: Interscience. 1961.

    Google Scholar 

  • Lamperti, J. W. (1962). Semi-stable stochastic processes. Translations - American Mathematical Society, 104, 62–78.

    Article  MathSciNet  MATH  Google Scholar 

  • Lamperti, J. W. (1972). Semi-stable Markov processes. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 22, 205–225.

    Article  MathSciNet  MATH  Google Scholar 

  • Lavancier, F. (2006). Long memory random fields. In P. Doukhan, P. Bertail, & P. Soulier (Eds.), Lecture notes in statistics: Vol. 187. Dependence in probability and statistics (pp. 195–220). New York: Springer.

    Chapter  Google Scholar 

  • Lavancier, F. (2007). Invariance principles for non-isotropic long memory random fields. Statistical Inference for Stochastic Processes, 10(3), 255–282.

    Article  MathSciNet  MATH  Google Scholar 

  • Lévy, P. (1938). Plane or space curves and surfaces consisting of parts similar to the whole. Reading: Addison-Wesley. Reprinted in: Classics on Fractals, G. A. Edgar (Ed.) (1993).

    Google Scholar 

  • Lighthill, M. J. (1962). Introduction to Fourier analysis and generalised functions. Cambridge monographs on mechanics and applied mathematics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Major, P. J. (1981). Lecture notes in mathematics: Vol. 849. Multiple Wiener–Itô Integrals. New York: Springer.

    MATH  Google Scholar 

  • Mandelbrot, B. B. (1965). Une classe de processus stochastiques homothétiques à soi; application à la loi climaologique de H. E. Hurst. Comptes Rendus de L’Académie des Sciences de Paris, 260, 3274–3277.

    MathSciNet  MATH  Google Scholar 

  • Mandelbrot, B. B. (1967). How long is the coast of Britain? Science, 155, 636.

    Article  Google Scholar 

  • Mandelbrot, B. B. (1969). Long-run linearity, locally Gaussian process, H-spectra and infinite variance. International Economic Review, 10, 82–113.

    Article  MATH  Google Scholar 

  • Mandelbrot, B. B. (1971). When can price be arbitraged efficiently? A limit to the validity of the random walk and martingale models. Reviews of Economics and Statistics, LIII, 225–236.

    Article  MathSciNet  Google Scholar 

  • Mandelbrot, B. B. (1977). Fractals: form, chance and dimension. San Francisco: Freeman.

    MATH  Google Scholar 

  • Mandelbrot, B. B. (1983). The fractal geometry of nature. San Francisco: Freeman.

    Google Scholar 

  • Mandelbrot, B. B., & van Ness, J. W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Review, 10(4), 422–437.

    Article  MathSciNet  MATH  Google Scholar 

  • Mandelbrot, B. B., & Wallis, J. R. (1968a). Noah, Joseph and operational hydrology. Water Resources Research, 4(5), 909–918.

    Article  Google Scholar 

  • Mandelbrot, B. B., & Wallis, J. R. (1968b). Robustness of the rescaled range R/S and the measurement of non-cyclic long-run statistical dependence. Water Resources Research, 5, 967–988.

    Article  Google Scholar 

  • Mandelbrot, B. B., & Wallis, J. R. (1969a). Computer experiments with fractional Gaussian noises. Water Resources Research, 5(1), 228–267.

    Article  Google Scholar 

  • Mandelbrot, B. B., & Wallis, J. R. (1969b). Some long-run properties of geophysical records. Water Resources Research, 5, 321–340.

    Article  Google Scholar 

  • Mandelbrot, B. B., & Wallis, J. R. (1969c). Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence. Water Resources Research, 5, 967–988.

    Article  Google Scholar 

  • Manley, G. (1953). The mean temperature of Central England, 1698 to 1952. Quarterly Journal of the Royal Meteorological Society, 79, 242–261.

    Article  Google Scholar 

  • Manley, G. (1974). Central England temperatures: monthly means 1659 to 1973. Q.J.R. Quarterly Journal of the Royal Meteorological Society, 100, 389–405.

    Article  Google Scholar 

  • Mansfield, P., Rachev, S., & Samorodnitsky, G. (2001). Long strange segments of a stochastic process and long range dependence. The Annals of Applied Probability, 11, 878–921.

    Article  MathSciNet  MATH  Google Scholar 

  • Mathéron, G. (1962). Traité de Géostatistique Appliquée. Cambridge philos. soc., Tome 1. Paris: Editions Technip.

    Google Scholar 

  • Matheron, G. (1973). The intrinsic random functions and their applications. Advances in Applied Probability, 5, 439–468.

    Article  MathSciNet  MATH  Google Scholar 

  • Mikosch, T., & Samorodnitsky, G. (2000). Ruin probability with claims modeled by a stationary ergodic stable process. The Annals of Probability, 28(4), 1814–1851.

    Article  MathSciNet  MATH  Google Scholar 

  • Mosteller, F., & Tukey, J. W. (1977). Data analysis and regression: a second course in statistics. Reading: Addison-Wesley.

    Google Scholar 

  • Newcomb, S. (1895). Astronomical constants (the elements of the four inner planets and the fundamental constants of astronomy). Supplement to the American ephemeris and nautical almanac for 1897. Washington D.C.: US Government Printing Office.

    Google Scholar 

  • Parker, D. E., & Horton, E. B. (2005). Uncertainties in the Central England temperature series since 1878 and some changes to the maximum and minimum series. International Journal of Climatology, 25, 1173–1188.

    Article  Google Scholar 

  • Parker, D. E., Legg, T. P., & Folland, C. K. (1992). A new daily Central England temperature series, 1772–1991. International Journal of Climatology, 12, 317–342.

    Article  Google Scholar 

  • Pearson, K. (1902). On the mathematical theory of errors of judgement, with special reference to the personal equation. In Philosophical transactions of the royal society of London (pp. 235–299).

    Google Scholar 

  • Peirce, C. S. (1873). Theory of errors of observations. Appendix No. 21 (pp. 200–224 and plate 28) of report of the superintendent of the US coast survey for the year ending November 1870). G.P.O., Washington. Reprinted in the new elements of mathematics by C.S. Peirce, ed. by C. Eisele, Humanities Press, Atlantic Highlands, 1976, Vol. 3, pt. 1, pp. 639–676.

    Google Scholar 

  • Percival, D. B. (1983). The statistics of long-memory processes. Ph.D. thesis, Dept. of Statistics, University of Washington, Seattle.

    Google Scholar 

  • Percival, D. B., & Guttorp, P. (1994). Long-memory processes, the Allan variance and wavelets. In E. Foufoula-Georgiu & P. Kumar (Eds.), Wavelets in geophysics. New York: Academic Press.

    Google Scholar 

  • Rachev, S. T., & Samorodnitsky, G. (2001). Long strange segments in a long-range dependent moving average. Stochastic Processes and Their Applications, 93(1), 119–148.

    Article  MathSciNet  MATH  Google Scholar 

  • Racheva-Iotova, B., & Samorodnitsky, G. (2003). Long range dependence and heavy tails. In S. T. Rachev (Ed.), Handbook of heavy tailed distributions in finance (pp. 641–662). Amsterdam: Elsevier. Ch. 16.

    Chapter  Google Scholar 

  • Resnick, S. I., & Samorodnitsky, G. (2004). Point processes associated with stationary stable processes. Stochastic Processes and Their Applications, 114(2), 191–209.

    Article  MathSciNet  MATH  Google Scholar 

  • Robinson, P. M. (1991). Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression. Journal of Econometrics, 47, 67–84.

    Article  MathSciNet  MATH  Google Scholar 

  • Robinson, P. M. (2008). Multiple local Whittle estimation in stationary systems. The Annals of Statistics, 36(5), 2508–2530.

    Article  MathSciNet  MATH  Google Scholar 

  • Rosenblatt, M. (1961). Independence and dependence. In Proc. 4th Berkeley sympos. math. statist. and prob. (Vol. II, pp. 431–443). Berkeley: University of California Press.

    Google Scholar 

  • Samorodnitsky, G. (2002). Long range dependence, heavy tails and rare events. MaPhySto, Centre for Mathematical Physics and Stochastics, Aarhus. Lecture Notes.

    Google Scholar 

  • Samorodnitsky, G. (2004). Extreme value theory, ergodic theory, and the boundary between short memory and long memory for stationary stable processes. Annals of Probability, 32, 1438–1468.

    Article  MathSciNet  MATH  Google Scholar 

  • Samorodnitsky, G. (2005). Null flows, positive flows and the structure of stationary symmetric stable processes. The Annals of Probability, 33(5), 1782–1803.

    Article  MathSciNet  Google Scholar 

  • Samorodnitsky, G. (2006). Long range dependence. Foundations and Trends in Stochastic Systems, 1(3), 163–257.

    Article  MathSciNet  MATH  Google Scholar 

  • Samorodnitsky, G., & Taqqu, M. S. (1994). Stable non-Gaussian random processes: stochastic models with infinite variance. New York: Chapman & Hall/CRC Press.

    MATH  Google Scholar 

  • Sedletskii, A. M. (2000). Fourier transforms and approximations. Boca Raton: CRC press.

    MATH  Google Scholar 

  • Seneta, E. (1976). Lecture notes in mathematics: Vol. 508. Regularly varying functions. New York: Springer.

    Book  MATH  Google Scholar 

  • Sierpinksi, M. (1915). Sur une courbe dont tout point est un point de ramification. Comptes Rendus de L’Académie des Sciences de Paris, 160, 302–305.

    Google Scholar 

  • Smith, H. J. S. (1875). On the integration of discontinuous functions. Proceedings of the London Mathematical Society, Series 1, 6, 140–153.

    MATH  Google Scholar 

  • Smith, H. F. (1938). An empirical law describing heterogeneity in the yields of agricultural crops. Journal of Agricultural Science, 28, 1–23.

    Article  Google Scholar 

  • Solo, V. (1992). Intrinsic random functions and the paradox of 1/f noise. SIAM Journal on Applied Mathematics, 52(1), 270–291.

    Article  MathSciNet  MATH  Google Scholar 

  • Student (1927). Errors of routine analysis. Biometrika, 19, 151–164.

    Article  Google Scholar 

  • Taqqu, M. S. (1975). Weak convergence to fractional Brownian motion and to the Rosenblatt process. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 31, 287–302.

    Article  MathSciNet  MATH  Google Scholar 

  • Taqqu, M. S. (1979). Convergence of integrated processes of arbitrary Hermite rank. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 50, 53–83.

    Article  MathSciNet  MATH  Google Scholar 

  • Vasilkov, A. P., Joiner, J., Spurr, R. J. D., Bhartia, P. K., Levelt, P., & Stephens, G. (2008). Evaluation of the OMI cloud pressures derived from rotational Raman scattering by comparisons with other satellite data and radiative transfer simulations. Geophysical Research, 113, D15S19. doi:10.1029/2007JD008689.

    Article  Google Scholar 

  • Volterra, V. (1881). Alcune osservazioni sulle funzioni punteggiate discontinue. Giornale di Matematiche, 19, 76–86.

    MATH  Google Scholar 

  • von Koch, H. (1904). Sur une courbe continue sans tangente obtenus par une construction géométrique élémentaire. Arkiv for Mathematik, Astronomi och Fysich, 1, 681–704.

    MATH  Google Scholar 

  • Whittle, P. (1956). On the variation of yield variance with plot size. Biometrika, 43, 337–343.

    MathSciNet  MATH  Google Scholar 

  • Whittle, P. (1962). Gaussian estimation in stationary time series. Bulletin de L’Institut International de Statistique, 39, 105–129.

    MathSciNet  MATH  Google Scholar 

  • Wilson, E. B., & Hilferty, M. M. (1929). Note on C.S. Peirce’s experimental discussion of the law of errors. Proceedings of the National Academy of Sciences of the United States of America, 15(2), 120–125.

    Article  MATH  Google Scholar 

  • Zygmund, A. (1968). Trigonometric series (Vol. 1). Cambridge: Cambridge University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beran, J., Feng, Y., Ghosh, S., Kulik, R. (2013). Definition of Long Memory. In: Long-Memory Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35512-7_1

Download citation

Publish with us

Policies and ethics