Skip to main content

Multifaceted Tunability of One-Dimensional Helicoidal Magnetophotonic Crystals

  • Chapter
Magnetophotonics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 178))

  • 1664 Accesses

Abstract

The photonic bandgaps (PBGs) of a 1D photonic crystal can be tailored in a variety of ways, depending on the types of mechanism incorporated in the design of that photonic crystal. These mechanisms can be structural, that is, frozen into the photonic crystal during fabrication, or dynamic, that is, they can be varied post-fabrication by manipulating, say, a low-frequency magnetic field. Interleaving magnetophotonic garnet layers with layers of a structurally chiral material (SCM) leads to a 1D helicoidal magnetophotonic crystal (HMPC), the interaction of whose overall period and the helicoidal period of the SCM layers leads to intra-Brillouin-zone PBGs which depend on the structural handedness of the SCM layers and whose gapwidths are tunable in a multifaceted fashion. Even as the overall period grows very large, one PBG remains unaffected as it is due to the helicoidal period. The gapwidths can be magnetically tuned by an externally impressed dc magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.M. Graham, D.W. Lee, K. Nortsog, Am. J. Bot. 80, 198 (1993)

    Article  Google Scholar 

  2. K.S. Gould, D.W. Lee, Am. J. Bot. 83, 45 (1996)

    Article  Google Scholar 

  3. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd edn. (Princeton University Press, Princeton, 2008)

    Google Scholar 

  4. S. Chandrasekhar, Liquid Crystals, 2nd edn. (Cambridge University Press, Cambridge, 1992)

    Book  Google Scholar 

  5. A. Lakhtakia, R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, Bellingham, 2005)

    Book  Google Scholar 

  6. H.A. Macleod, Thin-Film Optical Filters, 3rd edn. (IOP, Bristol, 2001)

    Book  Google Scholar 

  7. I.J. Hodgkinson, Q.h. Wu, Adv. Mater. 13, 889 (2001)

    Article  CAS  Google Scholar 

  8. J. Lub, P. Whitte, C. Doornkamp, J.P. Vogels, R.T. Wegh, Adv. Mater. 15, 1420 (2003)

    Article  CAS  Google Scholar 

  9. A. Lakhtakia, M.W. McCall, J.A. Sherwin, Q.H. Wu, I.J. Hodgkinson, Opt. Commun. 194, 33 (2001)

    Article  CAS  Google Scholar 

  10. Y.J. Liu, J. Shi, F. Zhang, H. Liang, J. Xu, A. Lakhtakia, S.J. Fonash, T.J. Huang, Sens. Actuators B, Chem. 156, 593 (2011)

    Article  Google Scholar 

  11. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

    Article  CAS  Google Scholar 

  12. V.I. Kopp, B. Fan, H.K.M. Vithana, A.Z. Genack, Opt. Lett. 23, 1707 (1998)

    Article  CAS  Google Scholar 

  13. A. Mekis, J.C. Chen, I. Kurland, S. Fan, P.R. Villeneuve, J.D. Joannopoulos, Phys. Rev. Lett. 77, 3787 (1996)

    Article  CAS  Google Scholar 

  14. M.J. Steel, R.M. Osgood Jr., J. Lightwave Technol. 19, 495 (2001)

    Article  CAS  Google Scholar 

  15. V.I. Kopp, A.Z. Genack, Phys. Rev. Lett. 89, 033901 (2002)

    Article  Google Scholar 

  16. I.J. Hodgkinson, Q.h. Wu, L. De Silva, M. Arnold, M.W. McCall, A. Lakhtakia, Phys. Rev. Lett. 91, 223903 (2003)

    Article  Google Scholar 

  17. F. Wang, A. Lakhtakia, Opt. Express 13, 7319 (2005)

    Article  Google Scholar 

  18. J. Gao, A. Lakhtakia, M. Lei, J. Nanophotonics 5, 051502 (2011)

    Article  Google Scholar 

  19. F. Wang, A. Lakhtakia, Opt. Commun. 215, 79 (2003)

    Article  CAS  Google Scholar 

  20. N.Y. Ha, Y. Ohtsuka, S.M. Jeong, S. Nishimura, G. Suzaki, Y. Takanishi, K. Ishikawa, H. Takezoe, Nat. Mater. 7, 43 (2008)

    Article  CAS  Google Scholar 

  21. J. Schmidtke, W. Stille, H. Finkelmann, Phys. Rev. Lett. 90, 083902 (2003)

    Article  Google Scholar 

  22. M.H. Song, N.Y. Ha, K. Amemiya, B. Park, Y. Takanishi, K. Ishikawa, J.W. Wu, S. Nishimura, T. Toyooka, H. Takezoe, Adv. Mater. 18, 193 (2006)

    Article  CAS  Google Scholar 

  23. I. S̆olc, Czechoslov. J. Phys. 4, 65 (1954)

    Article  Google Scholar 

  24. P. Yeh, J. Opt. Soc. Am. 5, 742 (1979)

    Article  Google Scholar 

  25. M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase, K. Yoshino, Adv. Mater. 15, 974 (2003)

    Article  CAS  Google Scholar 

  26. S.S. Choi, S.M. Morris, H.J. Coles, W.T.S. Huck, Appl. Phys. Lett. 91, 231110 (2007)

    Article  Google Scholar 

  27. I.L. Lyubchanskii, N.N. Dadoenkova, M.I. Lyubchanskii, E.A. Shapovalov, Th. Rasing, J. Phys. D, Appl. Phys. 36, R277 (2003)

    Article  CAS  Google Scholar 

  28. S. Kahl, A. Grishin, Appl. Phys. Lett. 84, 1438 (2004)

    Article  CAS  Google Scholar 

  29. M. Levy, R. Li, Appl. Phys. Lett. 89, 121113 (2006)

    Article  Google Scholar 

  30. M. Levy, A. Chakravarty, P. Kumar, X. Huang, in Magnetophotonics: From Theory to Applications, ed. by M. Inoue, M. Levy, A. Baryshev (Springer, Berlin, 2013), Chap. 7

    Google Scholar 

  31. M. Levy, A.A. Jalali, J. Opt. Soc. Am. B 24, 1603 (2007)

    Article  CAS  Google Scholar 

  32. F. Wang, A. Lakhtakia, Appl. Phys. Lett. 92, 011115 (2008). The expression α=sin−1[ϵ g /Δ (m)] in this paper must be corrected to α=tan−1[ϵ g /Δ (m)]

    Article  Google Scholar 

  33. F. Wang, A. Lakhtakia, Phys. Rev. B 79, 193102 (2009)

    Article  Google Scholar 

  34. F. Wang, A. Lakhtakia, Proc. R. Soc. Lond. A 461, 2985 (2005)

    Article  CAS  Google Scholar 

  35. M.D. Pickett, A. Lakhtakia, Optik 113, 367 (2002)

    Article  Google Scholar 

  36. F. Wang, A. Lakhtakia, Phys. Rev. B 79, 075115 (2011)

    Article  Google Scholar 

  37. X. Huang, R. Li, H. Yang, M. Levy, J. Magn. Magn. Mater. 300, 112 (2006)

    Article  CAS  Google Scholar 

  38. A. Fedyanin, O. Aktsipetrov, D. Kobayashi, K. Nishimura, H. Uchida, M. Inoue, J. Magn. Magn. Mater. 282, 256 (2004)

    Article  CAS  Google Scholar 

  39. M. Levy, R. Li, Appl. Phys. Lett. 89, 121113 (2006)

    Article  Google Scholar 

  40. A. Lakhtakia, V.C. Venugopal, M.W. McCall, Opt. Commun. 177, 57 (2000)

    Article  CAS  Google Scholar 

  41. A. Lakhtakia, Opt. Commun. 275, 283 (2007)

    Article  CAS  Google Scholar 

  42. J. Li, L. Zhou, C.T. Chan, P. Sheng, Phys. Rev. Lett. 90, 083901 (2003)

    Article  Google Scholar 

  43. F. Wang, A. Lakhtakia, Z. Shi, SPIE Newsroom (2010). doi:10.1117/2.1201009.002581

    Google Scholar 

Download references

Acknowledgements

F.W. is grateful to Prof. Thomas W. Lester (University of Kentucky, College of Engineering) for encouraging this research effort. A.L. thanks the Charles Godfrey Binder Endowment at Penn State for partial support of his research efforts. The continuing support from the families of both authors is much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhlesh Lakhtakia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, F., Lakhtakia, A. (2013). Multifaceted Tunability of One-Dimensional Helicoidal Magnetophotonic Crystals. In: Inoue, M., Levy, M., Baryshev, A. (eds) Magnetophotonics. Springer Series in Materials Science, vol 178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35509-7_2

Download citation

Publish with us

Policies and ethics