Skip to main content

Perception Processing for General Intelligence: Bridging the Symbolic/Subsymbolic Gap

  • Conference paper
Artificial General Intelligence (AGI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7716))

Included in the following conference series:

Abstract

Bridging the gap between symbolic and subsymbolic representations is a – perhaps the – key obstacle along the path from the present state of AI achievement to human-level artificial general intelligence. One approach to bridging this gap is hybridization – for instance, incorporation of a subsymbolic system and a symbolic system into a integrative cognitive architecture. Here we present a detailed design for an implementation of this approach, via integrating a version of the DeSTIN deep learning system into OpenCog, an integrative cognitive architecture including rich symbolic capabilities. This is a ”tight” integration, in which the symbolic and subsymbolic aspects exert detailed real-time influence on each others’ operations. An earlier technical report has described in detail the revisions to DeSTIN needed to support this integration, which are mainly along the lines of making it more ”representationally transparent,” so that its internal states are easier for OpenCog to understand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pinker, S., Mehler, J.: Connections and Symbols. MIT Press (1988)

    Google Scholar 

  2. Garg, N., Henderson, J.: Temporal restricted boltzmann machines for dependency parsing. In: Proc. ACL (2011)

    Google Scholar 

  3. Lehmann, J., Bader, S., Hitzler, P.: Extracting reduced logic programs from artificial neural networks. Applied Intelligence (2010)

    Google Scholar 

  4. Shanahan, M., Randell, D.A.: A logic-based formulation of active visual perception. In: Knowledge Representation (2004)

    Google Scholar 

  5. Lebiere, C., Anderson, J.R.: A connectionist implementation of the act-r production system. In: Proceedings of the Fifteenth Annual Conference of the Cognitive Science Society (1993)

    Google Scholar 

  6. Jilk, D.J., Lebiere, C., O’Reilly, R.C., Anderson, J.R.: SAL: An explicitly pluralistic cognitive architecture. Journal of Experimental and Theoretical Artificial Intelligence 20, 197–218 (2008)

    Article  Google Scholar 

  7. Laird, J.E.: The Soar Cognitive Architecture. MIT Press (2012)

    Google Scholar 

  8. Hammer, B., Hitzler, P. (eds.): Perspectives of Neural-Symbolic Integration. SCI, vol. 77. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  9. Goertzel, B.: Perception processing for general intelligence: Bridging the symbolic/subsymbolic gap, http://wp.goertzel.org/?p=404

  10. Goertzel, B., et al.: Opencogbot: An integrative architecture for embodied AGI. In: Proc. of ICAI 2010, Beijing (2010)

    Google Scholar 

  11. Goertzel, B., Pitt, J., Wigmore, J., Geisweiller, N., Cai, Z., Lian, R., Huang, D., Yu, G.: Cognitive synergy between procedural and declarative learning in the control of animated and robotic agents using the opencogprime AGI architecture. In: Proceedings of AAAI 2011 (2011)

    Google Scholar 

  12. Goertzel, B., Pennachin, C., et al.: An integrative methodology for teaching embodied non-linguistic agents, applied to virtual animals in second life. In: Proc. of the First Conf. on AGI. IOS Press (2008)

    Google Scholar 

  13. Goertzel, B., Pitt, J., Cai, Z., Wigmore, J., Huang, D., Geisweiller, N., Lian, R., Yu, G.: Integrative general intelligence for controlling game AI in a minecraft-like environment. In: Proc. of BICA 2011 (2011)

    Google Scholar 

  14. Goertzel, B., Pinto, H., Pennachin, C., Goertzel, I.F.: Using dependency parsing and probabilistic inference to extract relationships between genes, proteins and malignancies implicit among multiple biomedical research abstracts. In: Proc. of Bio-NLP 2006 (2006)

    Google Scholar 

  15. Arel, I., Rose, D., Karnowski, T.: A deep learning architecture comprising homogeneous cortical circuits for scalable spatiotemporal pattern inference. In: NIPS 2009 Workshop on Deep Learning for Speech Recognition and Related Applications (2009)

    Google Scholar 

  16. Arel, I., Rose, D., Coop, R.: Destin: A scalable deep learning architecture with application to high-dimensional robust pattern recognition. In: Proc. AAAI Workshop on Biologically Inspired Cognitive Architectures (2009)

    Google Scholar 

  17. Hawkins, J., Blakeslee, S.: On Intelligence. Brown Walker (2006)

    Google Scholar 

  18. George, D., Hawkins, J.: Towards a mathematical theory of cortical micro-circuits. PLoS Comput. Biol. 5 (2009)

    Google Scholar 

  19. Tarifi, M., Sitharam, M., Ho, J.: Learning hierarchical sparse representations using iterative dictionary learning and dimension reduction. In: Proc. of BICA 2011 (2011)

    Google Scholar 

  20. Bundzel, Hashimoto: Object identification in dynamic images based on the memory-prediction theory of brain function. Journal of Intelligent Learning Systems and Applications 2-4 (2010)

    Google Scholar 

  21. Goertzel, B.: Integrating a compositional spatiotemporal deep learning network with symbolic representation/reasoning within an integrative cognitive architecture via an intermediary semantic network. In: Proceedings of AAAI Symposium on Cognitive Systems (2011)

    Google Scholar 

  22. Karnowski, T., Arel, I., Rose, D.: Deep spatiotemporal feature learning with application to image classification. In: The 9th International Conference on Machine Learning and Applications, ICMLA 2010 (2010)

    Google Scholar 

  23. Lee, S.H., Kim, J., Park, F.C., Kim, M., Bobrow, J.E.: Newton-type algorithms for dynamics-based robot movement optimization. IEEE Transactions on Robotics 21(4), 657–667 (2005)

    Article  Google Scholar 

  24. Yeo, S., Kim, J., Lee, S.H., Park, F.C., Park, W., Kim, J., Park, C., Yeo, I.: A modular object-oriented framework for hierarchical multi-resolution robot simulation. Robotica 22(2), 141–154 (2004)

    Article  Google Scholar 

  25. Goertzel, B.: Modifying the destin perception architecture to enable representationally transparent deep learning, http://wp.goertzel.org/?p=404

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goertzel, B. (2012). Perception Processing for General Intelligence: Bridging the Symbolic/Subsymbolic Gap. In: Bach, J., Goertzel, B., Iklé, M. (eds) Artificial General Intelligence. AGI 2012. Lecture Notes in Computer Science(), vol 7716. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35506-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35506-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35505-9

  • Online ISBN: 978-3-642-35506-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics